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Abstract

Background: Hyperglycaemia is associated with adverse outcomes in the intensive care unit, and initial studies
suggested outcome benefits of glycaemic control (GC). However, subsequent studies often failed to replicate these
results, and they were often unable to achieve consistent, safe control, raising questions about the benefit or harm
of GC as well as the nature of the association of glycaemia with mortality and clinical outcomes. In this study, we
evaluated if non-survivors are harder to control than survivors and determined if glycaemic outcome is a function
of patient condition and eventual outcome or of the glycaemic control provided.

Methods: Clinically validated, model-based, hour-to-hour insulin sensitivity (SI) and its hour-to-hour variability
(%ΔSI) were identified over the first 72 h of therapy in 145 patients (119 survivors, 26 non-survivors). In hypothesis
testing, we compared distributions of SI and %ΔSI in 6-hourly blocks for survivors and non-survivors. In equivalence
testing, we assessed if differences in these distributions, based on blood glucose measurement error, were clinically
significant.

Results: SI level was never equivalent between survivors and non-survivors (95% CI of percentage difference in
medians outside ±12%). Non-survivors had higher SI, ranging from 9% to 47% higher overall in 6-h blocks, and
this difference became statistically significant as glycaemic control progressed. %ΔSI was equivalent between
survivors and non-survivors for all 6-hourly blocks (95% CI of difference in medians within ±12%) and decreased
in general over time as glycaemic control progressed.

Conclusions: Whereas non-survivors had higher SI levels, variability was equivalent to that of survivors over the
first 72 h. These results indicate survivors and non-survivors are equally controllable, given an effective glycaemic control
protocol, suggesting that glycaemia level and variability, and thus the association between glycaemia and outcome, are
essentially determined by the control provided rather than by underlying patient or metabolic condition.
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Background
Rationale
Glycaemic control (GC) in the intensive care unit (ICU)
is a controversial subject [1–7]. Whereas some studies
showed improved mortality with GC within a tight or
intermediate range [8–12], several others studies and
larger analyses did not reproduce these results [13–23].
Increased hypoglycaemia induced by the GC protocol,

patient variability and/or protocol compliance further
confounds results.
The strong associations of blood glucose (BG) level

and/or variability with mortality [24–31] have been used
to make a case for GC. The association of moderate or se-
vere hypoglycaemia with increased mortality [29, 32–34]
similarly indicates that improved control must be achieved
safely, despite high inter- and intra- patient variability
[28, 31, 35–39]. The association of high times in
intermediate bands with reduced mortality [40–45]
would indicate that this control quality must be consistent
over time and for most (or all) patients, which was
achieved in only a few studies considering outcome
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[8–10, 12]. This overall case states that outcomes are
driven largely by the quality and consistency of GC.
However, association is not causality. Another, equally

valid interpretation of these associations is that non-
survivors are harder to control, and thus they have the
higher glycaemic levels and variability associated with
mortality. Similarly, it may be that patients who die are
more variable and are thus more likely, under insulin
control, to experience moderate or severe hypoglycaemia
as a result of their underlying metabolic variability. Such
patients would also have less time in intermediate bands.
The equivalent case states that survivors are less variable
and thus easier to control, resulting in the more normal,
consistent glycaemia associated with improved outcomes.
This overall case suggests glycaemia and outcomes are
driven by patient condition, regardless of GC protocol, or
even that ineffective GC causes harm [5].
Separating these two interpretations would clarify the

debate, research and practice in GC. In the first case, do
we need better control, including any new sensors and
devices, to achieve safe, effective and consistent GC for
all patients in any unit? Or, in the second case, are GC
and its outcomes merely a reflection of the underlying
patient state and thus perhaps less necessary to control
beyond a modest lowering? In summary, are patient
glycaemia and outcome (predominantly) a function of the
GC achieved, or are they driven by patient condition?

Aim and research question
The aim of this study was to separate these two interpre-
tations by asking the question, Are patients who die
harder (metabolically) to control than patients who live?
If they are harder to control, then it could be considered
that patient condition drives glycaemia and outcome. If
not, then the quality of control could have the greater
influence.
This question is addressed through a retrospective

analysis of clinical data and metabolic level and variabil-
ity using a clinically validated metabolic model [46–49].
Lower metabolic level, captured as lower insulin sensi-
tivity (SI), indicates that increased insulin is required to
lower BG, which increases hypoglycaemic risk if there is
variability. Greater metabolic variability, captured as
greater hour-to-hour percentage change in insulin sensi-
tivity (%ΔSI), translates to greater outcome glycaemic
variability in response to insulin. Thus, both measures
capture the level of difficulty in GC, where a constant
level of SI could be readily titrated to an optimal insulin
dose, but unpredictable patient variability can result in
excessive hyper- and hypo- glycaemia and glycaemic
variability.
In short, do non-survivors have lower SI and/or greater

%ΔSI, indicative of being harder to control than survivors?
A positive answer would indicate that the well-known

associations between glycaemia and outcome are driven
more predominantly by patient condition. If non-survivors
were similarly difficult or easier to control than survivors,
it would indicate that the quality of GC achieved predomi-
nates in determining glycaemia and outcome.

Methods
To answer the research question, metabolic state and
variability were analysed using model-based SI. Key
outcomes included the following:

� Difference and/or equivalence of SI in survivors and
non-survivors

� Difference and/or equivalence of %ΔSI in survivors
and non-survivors

These outcomes are compared in 6-h blocks across
the first 72 h of patient GC in the ICU.

Patient cohort
Retrospective clinical data from 371 patients on the Spe-
cialised Relative Insulin Nutrition Tables (SPRINT) GC
protocol in the Christchurch Hospital Department of
Intensive Care between August 2005 and April 2007
[10] were analysed. The SPRINT protocol modulated
both insulin and nutrition, averaging approximately 16
BG measures per day. Figure 1 shows the inclusion cri-
teria for study analysis. Of 371 patients, 231 patients
were started on SPRINT within 12 h of ICU admission,
and 145 underwent at least 24 h of insulin therapy.
These patients make up Cohort 1, with demographic
data listed in Table 1.
Glycaemically, survivors and non-survivors had similar

times in band. The cohort median BG was statistically
different (5.8 vs 5.5 mmol/L, p < 0.01), but this difference
is within clinical equivalence (explained in ‘Analyses and
statistics’ subsection below) and thus considered not
clinically significant. Maximum Sequential Organ Fail-
ure Assessment scores on Day 1, excluding Glasgow
Coma Scale score [50], were higher for non-survivors,
as expected, and detailed breakdowns for specific co-
morbidities showed similar trends. All other demo-
graphics are similar, except for an expected difference
in Acute Physiology and Chronic Health Evaluation II
score.
To assess any impact of patient dropout, in Cohort 2,

we considered only patients who underwent at least 72
h of GC (80 patients). In the first cohort, we assessed as
much data as possible, excluding patients with very short
ICU stays, whereas in the second cohort, we assessed
the impact of competing risk in the analysis of SI and
mortality outcome due to patient dropout. Demographic
data of Cohort 2 are shown in Table 2 and are similar to
those of Cohort 1.
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Model-based SI
The physiological model-based glucose-insulin dynamics
represented in Fig. 2 are defined by the following equa-
tions [49]:

_G ¼ −pG:G tð Þ−SI :G tð Þ Q tð Þ
1þ αG:Q tð Þ þ

P tð Þ þ EGP−CNS
VG

;

ð1Þ

_I ¼ nK :I tð Þ−nL I tð Þ
1þ αI :I tð Þ−nI I tð Þ−Q tð Þð Þ þ uex tð Þ

V I

þ 1−xLð Þuen Gð Þ
VI

;

ð2Þ

_Q ¼ nI I tð Þ−Q tð Þð Þ−nC Q tð Þ
1þ αGQ tð Þ : ð3Þ

The main model variables and parameters are described
in Table 3, and the full model details and physiological
relevance are presented in Additional file 1. SI is a patient-
specific, time-varying parameter that characterises the

systemic response to glucose and insulin administration.
The SI units used (L/mU/minute) are consistent with a
rate parameter for assessing the rate of insulin-mediated
glucose removal, where litres per minute is a rate of flow
or uptake and mU−1 makes it dependent on current insu-
lin concentration. When SI is multiplied by the average
hourly glucose for the period over which SI is calculated,
the units become consistent with those used in the gold
standard hyperinsulinaemic, euglycaemic clamp assess-
ment of SI [51, 52]. Integral-based fitting [53] is used to
determine SI hourly from clinical BG, insulin and
nutrition-related data.
SI level is determined hourly for each patient, and the

forward SI variability (%ΔSI) is defined as the hour-to-
hour percentage change in SI, calculated as follows:

%ΔSIi ¼ 100� SIiþ1− SIi
SIi

A previous retrospective analysis showed that the SI of
critically ill patients was lower and more variable during

Fig. 1 Cohort selection from original 371 patients who treated according to the Specialised Relative Insulin Nutrition Tables (SPRINT) protocol. The first
comparison compares survivors and non-survivors from Cohort 1, using as much data as possible and excluding patients with a very short intensive
care unit (ICU) stay. The second comparison uses Cohort 2 to assess the impact of competing risk due to patient dropout
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the first 24 h of the ICU stay, where SI was analysed in
6-h blocks [35, 54]. However, differences between survi-
vors and non-survivors or other clinical outcomes were
not analysed.

Analyses and statistics
In this study, we analysed SI over the first 3 days (72 h)
of GC and compared the evolution of SI and %ΔSI for
survivors and non-survivors. Only patients who received
insulin therapy under the SPRINT protocol during the
first 12 h of ICU admission are included, so there are
only small differences between ICU admission and time
on the SPRINT protocol. This choice avoids any bias
due to different time since ICU admission, given the
evolution seen in previous studies [35, 36, 54] for the co-
hort as a whole.
SI and %ΔSI were analysed in 6-h blocks. Cumulative

distribution functions (CDFs) for each metric were cre-
ated for survivors and non-survivors over each 6-h
block. These CDFs show the overall distribution and are
defined exactly as the integral of the probability density
function capturing the histogram of the data. Therefore,

they clearly define the median and any percentile likeli-
hood (y-axis) for any given SI or %ΔSI values (x-axis).
Hypothesis testing was used to examine differences,

with p ≤ 0.05 used as a threshold for statistical signifi-
cance. The Kolmogorov-Smirnov test was used to
identify bias and shape difference in distributions of
%ΔSI. Although it is not certain if each family of com-
parisons is strictly independent (i.e., each 6-h block may
depend on surrounding blocks), for completeness and to
be conservative, a Bonferroni correction for multiple
comparisons was used to generalise the results. In both
Cohorts 1 and 2, there were 12 comparisons made,
bringing the significance level to p = 0.004 (0.05/12) [55].
Owing to a relatively large number of data points,

bootstrapping was used to examine the difference
between median SI and median %ΔSI between survivor
and non-survivor cohorts [55]. Data were bootstrapped
1000 times with replacement to generate cohorts of the
same size as the original data for a given 6-h block. A
95% CI for the difference between median SI values and
between median %ΔSI values was generated. Where this
CI does not cross zero, differences in medians are statisti-
cally significant with p ≤ 0.05 [55]. A 99.6% CI, consistent

Table 1 Baseline data of Cohort 1, comprising 145 patients treated according to Specialised Relative Insulin Nutrition Tables protocol

Cohort 1 Survivors Non-survivors p Value

Number of subjects 145 119 (82%) 26 (18%)

Age, years 67 [57–75] 66 [57–74] 73 [59–78] 0.15

Sex, M/F 91/54 75/44 16/10 1.00

APACHE II score 20 [17–26] 19 [16–25] 22 [19–31] <0.01

First-day SOFA score 6 [4–8] 6 [4–8] 8 [6–8] 0.02

Cardiac 3 [1–4] 3 [1–4] 4 [1–4]

Pulmonary 3 [2–4] 3 [2–3] 3 [2–4]

Hepatic 0 [0–0] 0 [0–0] 0 [0–1]

Renal 0 [0–0] 0 [0–0] 0 [0–0]

Coagulation 0 [0–1] 0 [0–1] 0 [0–0]

ICU length of stay, h 113 [65–212] 127 [65–256] 108 [65–154] 0.49

SPRINT duration, h 83 [44–159] 81 [42–168] 101.5 [55–126] 0.93

Diabetes mellitus type 1/type 2, % of total 9/24 (33) 8/21 (29) 1/3 (4) 1.00

Cohort BG, mmol/L 5.7 [4.9–6.7] 5.8 [5.0–6.8] 5.5 [4.8–6.4] <0.01a

Per-patient BG, mmol/L 5.7 [5.2–6.2] 5.8 [5.2–6.2] 5.3 [5.1–5.9] 0.03

Per-patient % BG 4.4–8 mmol/L (% all BG) 82.8 [71.9–89.5] (79.3) 82.1 [72.2–89.3] (79.1) 83.3 [70.4–94.4] (80.0) 0.71

Per-patient % BG <4 mmol/L (% all BG) 1.4 [0.0–5.6] (3.4) 1.4 [0.0–4.2] (3.0) 1.9 [0.0–8.5] (5.0) 0.19

Patients with BG <2.2 mmol/L, n 0 0 0

BG measurements per day 15.8 [14.5–17.7] 15.8 [14.4–18.0] 15.7 [14.8–16.2] 0.80

Per-patient median insulin, U/h 3 [2–3] 3 [2–3] 3 [2–3] 0.34

Per-patient median feed, g/h 3.2 [1.9–4.8] 3.3 [1.9–4.5] 3.1 [2.0–5.3] 0.58

Data are given as median [IQR] unless otherwise indicated. p Values were computed using Fisher’s exact text and rank-sum tests where appropriate
Abbreviations: APACHE Acute Physiology and Chronic Health Evaluation, BG Blood glucose, ICU Intensive care unit, SOFA Sequential Organ Failure Assessment,
SPRINT Specialised Relative Insulin Nutrition Tables protocol
aEquivalence, as explained in ‘Analyses and statistics’ subsection under ‘Methods’
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Table 2 Baseline data from Cohort 2, comprising 80 patients treated according to Specialised Relative Insulin Nutrition Tables protocol

Cohort 2 Survivors Non-survivors p Value

Number of subjects 80 63 17

Age, years 66 [54–75] 65 [49–74] 73 [57–76] 0.50

Sex, M/F 51/29 41/22 10/7 0.78

APACHE II score 21 [17–27] 21 [16–27] 21 [17–28] 0.60

First-day SOFA score 7 [4–8] 6 [4–8] 8 [6–8] 0.11

Cardiac 3 [1–4] 3 [1–4] 4 [2–4]

Pulmonary 3 [2–4] 3 [2–4] 4 [2–4]

Hepatic 0 [0–0] 0 [0–0] 0 [0–1]

Renal 0 [0–0] 0 [0–0] 0 [0–0]

Coagulation 0 [0–1] 0 [0–1] 0 [0–1]

ICU length of stay, h 180 [136–371] 214 [142–405] 142 [108–159] <0.01

SPRINT duration, h 155 [109–301] 161 [126–332] 110 [102–151] 0.01

Diabetes mellitus type 1/type 2, % of total 5/10 (15) 4/8 (12) 1/2 (3) 1.00

Cohort BG, mmol/L 5.7 [5.0–6.7] 5.8 [5.1–6.8] 5.6 [4.9–6.5] <0.01a

Per-patient BG, mmol/L 5.8 [5.3–6.2] 5.9 [5.4–6.2] 5.4 [5.2–6.0] 0.11

Per-patient % BG, 4.4–8 mmol/L, % of all BG 84.7 [73.6–91.7] (81.3) 84.7 [74.0–91.7] (81.5) 83.3 [71.5–94.8] (80.7) 0.98

Per-patient % BG <4 mmol/L, % of all BG 1.4 [0.0–2.8] (2.5) 1.4 [0.0–2.8] (2.0) 1.4 [0.0–5.6] (4.2) 0.31

Number of patients with BG <2.2 mmol/L 0 0 0

BG measurements per day 15.1 [13.8–16.3] 15.1 [13.4–16.7] 15.4 [14.7–15.9] 0.66

Per-patient median insulin, U/h 3 [2–3] 3 [3–3] 3 [2–3] 0.40

Per-patient median feed, g/h 3.3 [1.9–4.8] 3.5 [1.9–4.6] 2.8 [2.1–5.6] 0.80

Data are given as median [IQR] unless otherwise indicated. p Values were computed using Fisher’s exact test and rank-sum tests where appropriate
Abbreviations: APACHE Acute Physiology and Chronic Health Evaluation, BG Blood glucose, ICU Intensive care unit, SOFA Sequential Organ Failure Assessment,
SPRINT Specialised Relative Insulin Nutrition Tables protocol
aEquivalence, as explained in ‘Analyses and statistics’ subsection under ‘Methods’

Fig. 2 Schematic representation of the glucose-insulin model showing the physiological compartments and clearances, as well as the appearance
of exogenous insulin and carbohydrate, and their kinetic pathways. CNS Central nervous system, EGP Endogenous glucose production,
PN Parenteral nutrition, SI Insulin sensitivity
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with using p = 0.004, was taken into account when consid-
ering Bonferroni correction for multiple comparisons.
Hypothesis testing was used to examine differences

between cohorts and to assemble evidence to reject the
null hypothesis of data being drawn from the same
underlying distribution. However, it cannot provide evi-
dence for equivalence, especially for large sample sizes
[55–57]. Equivalence testing was used to assess the impact
of these differences on clinical decision making, regardless
of the underlying statistical significance (p value). Thus, it
is important to note that a difference can be statistically
significantly different and also equivalent, because the first
is a statistical measure and the second is a measure of the
clinical impact of the difference in the two distributions.
An analysis was done to determine an equivalence

interval for changes in SI, as reflected by clinical signifi-
cance. This interval thus defines the range within which
a difference of medians cannot be distinguished, owing
to either measurement error and/or clinical significance.
Clinical significance was defined as the change in SI re-
quired to exceed BG measurement error (SD ±9.4% [58])
or to cause a change in model-based insulin dose
recommendations. These calculations can be found in
Additional file 2. In this case, the equivalence range due
to measurement error was the narrowest across the range
of clinical inputs observed. This choice provides the nar-
rowest range and thus the most conservative or stringent
test of equivalence.
The resulting equivalence range for %ΔSI is typically

about 12–15%, but it is dependent on BG. Thus, any
changes in SI or %ΔSI within these ranges cannot be
detected as different from a change due to measurement
error and are thus equivalent. Equivalence testing is
independent of p values and hypothesis testing.
Equivalence was tested for SI and %ΔSI over each 6-h

interval. For SI, the bootstrapped percentage difference
in median SI was compared with the equivalence range.
If the 95% CI for the bootstrapped percentage difference
in SI medians was within the equivalence range, then
equivalence in SI was accepted (⇔). For %ΔSI, the abso-
lute difference in median %ΔSI was examined. If the

95% CI for the bootstrapped difference in median %ΔSI
was within the equivalence range, then equivalence in
%ΔSI was accepted (⇔). Conversely, in both cases, if the
95% CI was outside the equivalence range, equivalence
was thus rejected (×). Finally, equivalence was tested for
BG in Cohort 1 and Cohort 2 as a whole, using the
reported equivalence range of ±9.4%, which is 1 SD of
the relevant BG measurement error [58]. Equivalence
testing in this last case determined whether the signifi-
cant differences in median cohort BG in Tables 1 and 2
were clinically significant.

Results
SI level
Table 4 shows median SI and IQR for survivors and
non-survivors in both Cohort 1 and Cohort 2 over the
first 72 h. The CDFs for SI over each 6 h block for
Cohort 1 are shown in Fig. 3. Overall, SI level increases
over time, matching [35], where non-survivors have
higher SI than survivors.
In Cohort 1, the difference between median SI levels

was not statistically significant (95% CI crosses zero) for
the first 48 h, except for 6–11 h and 30–35 h. By Day 3,
the differences became significant, except for the 66–71
h block. With the Bonferroni correction applied, only
the 6–11 h and 48–53 h blocks remained statistically dif-
ferent. In every 6-h block, non-survivors had higher SI
levels than survivors. Figure 4 shows results of the
equivalence test for each 6-h block. At no time did the
median and 95% CI values for the percentage difference
of SI medians in survivors and non-survivors fall within
the equivalence range. Therefore, the median SI level
was never equivalent in survivors and non-survivors,
regardless of p values assessing difference.
The results were similar for Cohort 2. However, after

Bonferroni correction, median SI was statistically differ-
ent only for hours 48–53. Survivors and non-survivors
were never equivalent, and SI was always higher for
non-survivors in Cohort 2, all of whom had an ICU
length of stay of 3 days or longer.
Figure 5 shows the evolution of median [IQR] SI and

BG values over time between survivors and non-
survivors for Cohort 1 and Cohort 2. In both cohorts, SI
was higher for non-survivors, as reflected in Table 4,
and this difference was greater as control progressed. In
terms of BG, survivors and non-survivors had similar
levels for most hours. Equivalence testing on overall BG
distributions between survivors and non-survivors
showed the median and 95% CI of the percentage
change in median BG were 5.3 [2.6, 7.1] for Cohort 1
and 3.5 [0.9, 5.3] for Cohort 2, which were well within
equivalence ranges of 7.0–9.4%. Thus, whereas the
differences are statistically different, they confirm that

Table 3 Key variables of the Intensive Control Insulin-Nutrition-
Glucose metabolic glucose model

Parameter Description

G(t) Blood glucose level (mmol/L)

I(t) Plasma insulin concentration (mU/L)

Q(t) Interstitial insulin concentration (mU/L)

P(t) Glucose appearance in plasma from dextrose
intake (mmol/minute)

SI Insulin sensitivity (L/mU/minute)

Full table is provided in Additional file 1
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the differences in the median BG values in Tables 1 and
2 are not clinically significant. It is important to note
that these two figures do not necessarily reflect SI hour-
to-hour variability at a per-patient level. Two patients
could have equal variability in a 6-h period but at differ-
ent hours, and thus appear different in SI level, which
explains the need for a separate %ΔSI analysis assessing
the hour-to-hour variability.

SI variability (%ΔSI)
Results for %ΔSI are shown in Table 5 and Fig. 6. Over-
all, SI variability decreased over time (IQR narrows) for
both survivors and non-survivors, matching previously
reported results [35]. In both Cohort 1 and Cohort 2,
%ΔSI was not significantly different (p ≥ 0.11 in 11 of 12
blocks), especially when the Bonferroni correction for
multiple comparisons was made (p < 0.004 correction

Table 4 SI level (L/mU/minute) median [IQR] comparison between survivors and non-survivors using 6-h blocks

Hours Cohort 1: (n = 145 patients)

Survivors (SIS) L/mU/minute × 10−4 Non-survivors (SINS) L/mU/minute × 10−4 Median SIS − SINS [95% CI] L/mU/minute × 10−4

Day 1

0–5 1.39 [0.50, 2.54] 1.64 [0.63, 2.63] −0.25 [−0.60, 0.06] ×

6–11 1.94 [1.11, 3.35] 2.58 [1.42, 3.97] −0.63 [−1.04, −0.11]a,b ×

12–17 2.54 [1.42, 4.48] 3.39 [1.63, 4.79] −0.79 [−1.46, 0.22] ×

18–23 2.76 [1.57, 5.09] 3.22 [1.93, 5.16] −0.42 [−0.93, 0.14] ×

Day 2

24–29 2.96 [1.65, 4.98] 3.30 [1.81, 4.85] −0.30 [−0.73, 0.13] ×

30–35 3.08 [1.83, 5.73] 4.34 [2.35, 7.21] −1.23 [−2.16, −0.20]a ×

36–41 3.13 [1.81, 5.44] 3.42 [2.23, 5.36] −0.29 [−1.01, 0.43] ×

42–47 3.22 [1.81, 5.47] 4.43 [2.48, 6.24] −0.25 [−0.94, 0.16] ×

Day 3

48–53 3.28 [1.95, 5.36] 4.83 [3.13, 8.63] −1.57 [−2.36, −0.97]a,b ×

54–59 3.55 [2.03, 5.50] 4.65 [2.53, 7.27] −1.12 [−2.04, −0.40]a ×

60–65 3.39 [2.18, 5.18] 4.19 [2.71, 6.83] −0.81 [−1.59, −0.01]a ×

66–71 3.40 [2.43, 5.07] 3.86 [2.43, 8.30] −0.47 [−1.43, 0.16] ×

Hours Cohort 2: (n = 80 patients)

Survivors (SIS) L/mU/minute × 10−4 Non − Survivors (SINS) L/mU/minute × 10−4 Median SIS − SINS [95% CI] L/mU/minute × 10−4

Day 1

0–5 1.39 [0.43, 2.45] 1.38 [0.30, 2.54] −0.00 [−0.52, 0.57] ×

6–11 1.90 [0.92, 3.66] 2.22 [1.15, 3.62] −0.33 [−1.00, 0.02] ×

12–17 2.36 [1.37, 4.48] 2.46 [1.46, 4.50] −0.12 [−1.19, 0.61] ×

18–23 2.63 [1.53, 4.47] 2.94 [1.87, 4.50] −0.30 [−0.81, 0.14] ×

Day 2

24–29 2.95 [1.53, 4.52] 3.19 [1.65, 4.82] −0.26 [−0.75, 0.22] ×

30–35 3.04 [1.88, 5.07] 3.56 [2.24, 6.85] −0.55 [−1.95, 0.12] ×

36–41 3.06 [1.79, 4.94] 3.15 [2.14, 5.04] −0.10 [−0.79, 0.51] ×

42–47 3.21 [1.80, 5.23] 3.41 [2.93, 5.27] −0.24 [−0.86, 0.22] ×

Day 3

48–53 3.31 [1.98, 5.30] 4.59 [3.03, 8.20] −1.26 [−1.84, −0.41]a,b ×

54–59 3.59 [2.09, 5.50] 4.37 [2.43, 7.36] −0.87 [−1.81, −0.09]a ×

60–65 3.45 [2.18, 5.24] 3.94 [2.62, 6.53] −0.48 [−1.37, 0.25] ×

66–71 3.41 [2.43, 5.21] 3.68 [2.42, 7.56] −0.30 [−1.20, 0.24] ×

Non-equivalence is indicated by ×, Equivalence is indicated by ⇔
aHours where the medians are statistically different (95% CI on difference in medians does not cross zero)
bDifferences remaining significant after Bonferroni correction (99.6% CI on difference in medians does not cross zero)
Bootstrapped confidence interval (CI) in bold is statistically significant to p<0.05
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threshold). The 95% CI on median difference in %ΔSI
(bias only) can be considered significant only for the
36–41 h and 42–47 h blocks in Cohort 1 and only for
the 18–23 and 24–29 h blocks in Cohort 2 (bootstrap-
ping, right-most column of Table 5), but these signifi-
cances did not hold when the Bonferroni correction was
made (99.6% CI). In all cases, these differences were not
clinically significant. As shown in Fig. 7, the median and
95% CI change in %ΔSI difference was always within the
equivalence range for both Cohorts 1 and 2. There-
fore, SI variability assessed as %ΔSI in survivors and
non-survivors was equivalent in every 6-h block to 72 h.

Key results
In summary, the key results are as follows:

� SI level is not equivalent in any 6-h block within the
first 72 h of GC, and it is sometimes statistically
different between survivors and non-survivors.

� SI level is higher in non-survivors than in survivors
in every 6-h block for the first 72 h, and this
difference becomes statistically significant as GC
progresses.

� SI variability is equivalent between survivors and
non-survivors in any 6-h block within the first 72 h
of GC.

� Patient dropout had no impact on results, because
Cohort 2 had the same key outcomes.

� The major results are consistent, regardless of
whether the Bonferroni correction for multiple
comparisons is applied.

Fig. 3 Cohort 1 cumulative insulin sensitivity (SI) levels over 6-h time intervals for the first 72 h of glycaemic control. At any level of SI, the y-axis
gives the percentage of SI values (decimal percentile) below this level. The 95% CI on difference in medians was computed using bootstrapping
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Thus, whereas survivors and non-survivors differed in
their absolute SI, with non-survivors having higher SI,
they were equivalent in their %ΔSI.

Discussion
Primary question
Patient-specific SI and SI variability metrics are used to
assess underlying controllability between survivors and
non-survivors. Both statistical difference and equivalence
were tested in comparing these cohorts. Statistical differ-
ence (p < 0.05) tests whether the data come from similar
or different distributions, whereas, in contrast, equiva-
lence tests whether these values are clinically or physio-
logically equivalent, regardless of p value.
SI was statistically different between survivors and

non-survivors for five of twelve 6-h periods. However,
the cohorts were never clinically equivalent in SI for any
period. Non-survivors had higher SI in every period,
suggesting that slightly lower insulin doses would be
required to achieve normo-glycaemia, which is also seen
in the clinical results in Table 1. Key results were the
same for both cohorts examined.
%ΔSI was equivalent between survivors and non-

survivors for every period, and it was statistically differ-
ent in only two periods. Equivalent variability under the
same GC protocol would be reflected in similar times in
glycaemic bands and in glycaemic levels for both survi-
vors and non-survivors, as seen in Table 1. The results
were the same for both cohorts. Median BG was higher in
survivors (5.5 vs 5.8 mmol/L, p < 0.01 for both cohorts),

but this difference was shown to be clinically equivalent in
terms of measurement error and, in addition, would not
change the clinical interventions.
Whereas SI level tends to determine the total insu-

lin dose titrated, it is variability that determines the
risks of insulin therapy and overall controllability.
Overall, similar to higher SI for non-survivors and
equivalent variability suggest that survivors and non-
survivors are equally controllable, given an effective
GC protocol. This outcome in turn suggests that the
association between glycaemia and outcome is thus
predominated by the quality of GC achieved and not by
underlying patient variability. This result is important and
has implications for GC study design and practice.

Validity of SI metric
The results rely on the validity of the model-based esti-
mate of SI. The reliability of the SI metric is determined
by the underlying data and the ability of the model to cap-
ture key glucose-insulin dynamics. The Intensive Control
Insulin-Nutrition-Glucose (ICING) model used in the
present study is structurally very similar to the Dynamic
Insulin Sensitivity and Secretion Test model, for which
the SI metric has correlated well with the gold standard
euglycaemic clamp SI values [59–62], as have other very
similar models using the SI metrics and pharmacodynam-
ics used here [52]. The ICING model and its SI metric
have been used successfully and safely to guide insulin
therapy across different adult [47, 48, 63, 64] and neonatal
[65, 66] intensive care settings and delivery methods.

Fig. 4 Equivalence testing on insulin sensitivity (SI) for each 6 h block for Cohort 1 and Cohort 2. The solid blue lines give equivalence ranges for 9.4%
blood glucose error [58] and the blue dotted lines a smaller 7% error reported for the device used in highly controlled tests [105]. Equivalence is
accepted if the 95% CI (bars) of bootstrapped percentage differences in median SI values is within the equivalence range, and rejected otherwise (×)
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These clinical results suggest that the model is able of
capturing and accounting for all major glucose-insulin
dynamics, making the SI parameter, and its guiding of care
via forward prediction, clinically useful.
In addition, treatment independence of the SI param-

eter has been assessed using clinical data from inde-
pendent, matched patient cohorts [46, 67]. In the first
case, two cohorts and protocols (Glucontrol [14] and
SPRINT [10]) from Liège, Belgium, and Christchurch,
New Zealand, were simulated with both protocols, and
their glycaemic level and variability were compared with
those obtained clinically. Consistency in simulation
results across cohorts and high similarity in stochastic
plots of SI variability further validated the treatment and
cohort independence of SI [68]. In the second case, this
similarity and cross-validation were repeated across
three medical ICU cohorts, further validating these out-
comes [67]. Recent work suggests that it is an underlying
similarity in SI variability, independent of absolute SI
level, that drives GC outcomes [46, 67, 68]. This similar-
ity thus also drove the observed consistency between

clinical results using this model and SI metric for GC in
two very different ICUs [64].
Moreover, SI has been shown to assess and reflect

clinically expected changes in SI and metabolism for
important intensive care interventions. The impact of
glucocorticoids [69] and β-blockers [70] on SI level and
%ΔSI was shown to be limited in the context of the
SPRINT protocol. More specifically, insulin and nutri-
tion inputs were not statistically different in this study
between survivors and non-survivors (p > 0.34) (Table 1),
where increasing insulin use would reflect increased
insulin resistance (lower SI). These results thus suggest
that glucocorticoid-mediated influence on SI does not
have any net impact on the two groups, as there was
such a difference in the study by Pretty et al. [69]. Add-
itionally, the impact of exogenous nutrition and incretin
effects seen in changes in SI [71], the impact on SI from
haemodialysis altering insulin clearance [72], and finally
the insulin resistance observed on and off therapeutic
hypothermia [73] were all assessed using hourly identi-
fied SI based on the same model. Each of these studies

Fig. 5 Median [IQR] evolution of insulin sensitivity (SI) and blood glucose (BG) over time for survivors (blue) and non-survivors (red) in
Cohort 1 (a) and Cohort 2 (b)
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demonstrated the ability of SI and its changes to reflect
clinically expected outcomes and correlated with expec-
tations for the given intervention.
Other factors, such as insulin administration form

(bolus vs continuous dosing), have little impact on the
hourly calculated SI value. In this study, both survivors
and non-survivors were treated with bolus doses, elimin-
ating any effect that could exist for this comparison.

Glucose sensor errors could have a more measurable im-
pact on SI calculation [74], but the same glucometers
were used for all patients, similarly ameliorating this
affect. Continuous glucose monitoring (CGM) delivers
observations indicating greater apparent spontaneous
variability in BG levels than seen with typical intermit-
tent sampling. However, it is important to note that a
major part of this CGM-observed BG variability is due

Table 5 Hour-to-hour percentage change in insulin sensitivity (%ΔSI) median [IQR] comparison between survivors and non-survivors
using 6-h blocks

Hours Cohort 1: (n = 145 patients)

Survivors (%ΔSIS) % Non-survivors (%ΔSINS) % Kolmogorov-Smirnov test p value Median %ΔSIS-%ΔSINS [95% CI] %

Day 1

0–5 1.46 [−29.26, 54.74] 11.67 [−20.84, 56.41] 0.67 −8.12 [−16.22, 4.67] ⇔

6–11 7.37 [−14.66, 42.05] 9.47 [−11.45, 27.98] 0.53 −1.31 [−6.22, 5.74] ⇔

12–17 5.21 [−11.87, 30.89] 6.69 [−14.89, 42.15] 0.62 −0.98 [−9.46, 7.26] ⇔

18–23 3.24 [−16.02, 26.92] −0.63 [−12.21, 16.37] 0.12 3.72 [−1.99, 8.56] ⇔

Day 2

24–29 2.79 [−13.36, 23.35] 5.37 [−9.42, 23.52] 0.30 −2.70 [−8.60, 3.29] ⇔

30–35 1.76 [−15.13, 23.46] 1.57 [−11.32, 24.75] 0.78 0.34 [−8.54, 6.75] ⇔

36–41 1.92 [−12.19, 16.87] −4.01 [−15.63, 11.26] 0.04 6.10 [0.35, 10.70]a ⇔

42–47 −0.10 [−12.71, 17.98] 5.46 [−10.91, 21.91] 0.14 −5.66 [−11.61, −0.43]a ⇔

Day 3

48–53 1.57 [−10.74, 16.82] 3.41 [−7.30, 14.99] 0.30 −2.12 [−7.41, 1.77] ⇔

54–59 0.67 [−11.68, 15.80] −3.13 [−19.08, 11.65] 0.35 3.37 [−1.77, 8.20] ⇔

60–65 2.39 [−12.39, 17.03] 4.89 [−8.88, 21.88] 0.45 −2.50 [−9.06, 3.35] ⇔

66–71 1.26 [−9.80, 12.87] 3.78 [−8.82, 15.48] 0.35 −2.76 [−8.66, 2.80] ⇔

Hours Cohort 2: (n = 80 patients)

Survivors (%ΔSIS) % Non-survivors (%ΔSINS) % Kolmogorov-Smirnov test p value Median %ΔSIS-%ΔSINS [95% CI] %

Day 1

0–5 0 [−29.44, 43.57] 0.98 [−20.90, 57.81] 0.78 −0.98 [−16.02, 5.93] ⇔

6–11 8.80 [−14.66, 48.55] 10.59 [−17.24, 39.20] 0.90 −2.17 [−11.46, 6.83] ⇔

12–17 2.38 [−13.18, 29.19] 2.92 [−15.99, 38.92] 0.89 −0.02 [−11.00, 9.19] ⇔

18–23 4.09 [−14.80, 26.14] −2.13 [−11.66, 15.29] 0.11 6.16 [0.10, 12.10]a ⇔

Day 2

24–29 1.32 [−13.48, 20.79] 10.39 [−8.97, 25.86] 0.02 −9.23 [−14.18, −1.38]a ⇔

30–35 0.13 [−15.56, 21.72] 3.08 [−13.33, 23.03] 0.89 −2.38 [−10.72, 4.79] ⇔

36–41 2.54 [−12.13, 18.20] 0.40 [−11.95, 15.13] 0.39 2.95 [−1.86, 9.51] ⇔

42–47 1.37 [−13.37, 22.76] 2.42 [−11.83, 14.68] 0.46 −1.02 [−7.15, 5.68] ⇔

Day 3

48–53 0.88 [−10.32, 16.63] 3.16 [−7.25, 14.62] 0.30 −2.37 [−7.73, 1.79] ⇔

54–59 0.72 [−10.36, 14.28] −1.17 [−19.08, 12.68] 0.32 2.69 [−3.18, 7.71] ⇔

60–65 2.58 [−10.54, 16.38] 4.04 [−9.03, 21.96] 0.39 −1.89 [−8.44, 3.76] ⇔

66–71 1.26 [−9.74, 11.54] 3.72 [−9.06, 14.81] 0.40 −2.62 [−8.81, 3.12] ⇔

Equivalence is indicated by ⇔, Non-equivalence is indicated by ×
aHours where the medians are statistically different (95% CI on difference in medians does not cross zero)
Bootstrapped confidence interval (CI) in bold is statistically significant to p<0.05

Uyttendaele et al. Critical Care  (2017) 21:152 Page 11 of 17



not to patient metabolism but directly to sensor drift,
changes in the in situ environment of the sensor, patient
position and other factors [75–82]. Thus, what is
captured by CGM may be either realistic or an artefact
or some combination. However, differentiating these sys-
temic errors from real BG variability is not currently
possible without another reference measurement at the
same rate. As a result, the hourly determined SI values
used here are appropriate, particularly with regard to the
measurement rate in the data, which cannot capture any
real glycaemic variability in the data that occurs and
resolves between measurements. Hence, the overall
approach used here is appropriate to the data and its
sampling rate and does captures very high levels of vari-
ability, as seen in Fig. 6 with changes in SI up to 640%.

Two examples of SI profiles over time, indicating the
actual variability possible, are shown in Additional file 1.
Glucose complexity has been associated with mortality

[83, 84] but cannot be measured at the bedside in real
time as glycaemic levels, time in band, or variability can.
Equally, there is not the strong physiological evidence
that would support this association which exists for the
other metrics considered, and there are questions about
its proper use in analysing continuous glucose data to
create these associations [85, 86].
The presented results suggest non-survivors have higher

SI, which at first appeared counter-intuitive. However, it
can be hypothesised that some non-survivors may have
had weaker inflammatory immune responses and/or
weaker inflammatory counter-regulatory response to

Fig. 6 Cohort 1 cumulative hour-to-hour percentage changes in insulin sensitivity (%ΔSI) over 6-h time intervals for the first 72 h of glycaemic control.
At any level of %ΔSI, the y-axis gives the percentage of %ΔSI values (decimal percentile) below this level. p Values were calculated using the
Kolmogorov-Smirnov test
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insult. Although the literature commonly points to
increased inflammatory markers in non-survivors
(e.g., [87, 88]), there is evidence of instances where com-
promised immune response leads to increased mortality
(e.g., [89–92]). These physiological responses (both in-
flammatory [93–98] and counter-regulatory [94, 99–102])
drive hyperglycaemia via the inflammatory marker-
induced actions that reduced the effective SI values ana-
lysed here. They are also two of three major drivers of
hyperglycaemia, the third being high glucose itself. Hence,
weakened responses in those who die would lead to
slightly higher SI and thus may be the cause of the slightly
higher SI and slightly lower, clinically speaking, insulin use
in this cohort. We do not have evidence to prove this
hypothesis, but it would make a good hypothesis for a
future study.
In particular, SI is approximately 20% higher, on aver-

age, for non-survivors, ranging from about 9–40% over
time periods, which is at or within the level of change in
SI required to induce, in SPRINT, a 1-U/h change in
insulin dose, considering a median of 3 U/h (see
Additional file 2: Figure S2.5). Thus, this difference
changed few interventions, as seen in Table 1 (median
[IQR] of 3 [2, 3] U/h for both survivors and non-
survivors), where feed is also similar. Excluding dropout
in Cohort 2, the differences remained but were much
smaller (approximately 12%). Thus, although SI is higher
for non-survivors and not equivalent to SI of survivors, on
the basis of the most conservative estimate (percentage

change in SI to reach 9.4% BG measurement error), this
difference in SI did not have a significant clinical impact
in terms of interventions, where an approximately
20–25% change in SI was required to change an
intervention (see Additional file 2: Figure S2.5).
One advantage of the model-based SI used here is that

it accounts for all insulin and nutrition inputs as well as
resulting changes in glycaemia, allowing the SI metric to
reflect the underlying ability of the body to use insulin
for glucose uptake. Using SI thus allows an objective
numerical analysis to be carried out and for results to be
generalised to other mixed ICU populations.

Advantages and limitations
A first potential limitation of this work is that, as with
all models, the ICING model has ranges for BG and
nutrition-insulin interventions in which it is most accur-
ate [103]. These ranges span what is typically observed
in the Christchurch Hospital ICU, including BG within
the 4–10 mmol/L range and insulin and nutrition treat-
ments within 0–10 U/h and 20–120% of goal feed,
respectively. If this analysis were to be repeated in ICUs
or with protocols where treatments may commonly be
given outside these ranges, or where persistent hyper-
and/or hypoglycaemia were common, there would be
greater potential for analytical error. However, in this
case, the clinical data and inputs all fall within the ideal
range for the ICING model.

Fig. 7 Equivalence testing on insulin sensitivity variability (hour-to-hour percentage change in insulin sensitivity [%ΔSI]) for each 6-h block for
Cohort 1 and Cohort 2. The solid lines give equivalence ranges for 9.4% blood glucose error [58], and the dotted lines give a smaller 7% error
reported for the device used in highly controlled tests [104]. Equivalence is accepted (⇔ in Table 5) if the 95% CI (bars) of bootstrapped
difference in median %ΔSI are within the equivalence range, and rejected otherwise (×)
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A significant advantage of this work is that it uses data
of sufficient detail and quality for further analysis. Many
studies do not record (or report) detailed nutrition and/
or insulin inputs, so analyses are limited by either disre-
garding nutrition in the first place or considering daily av-
erages and effects. This data set included all time-valued
changes in insulin and nutrition in 1-2 h intervals, as well
as all BG measures, thus allowing a much higher degree of
resolution in the calculation of time-varying SI. The limi-
tation is that this analysis would be difficult to repeat with
data from other, larger studies because of this lack of detail
and/or temporal resolution of the GC data collected.
This study is limited in its retrospective nature and

because it was performed with data from a single centre.
However, the data cover a relatively large, generalised
patient cohort spanning several years of clinical practice.
Illness and injury can affect the inflammatory response
and thus the SI. The analysis cohorts were therefore
selected on the basis of starting GC within the first 12 h
of ICU stay to reduce the effect of time-varying degrees
of illness and injury on the time-varying analysis of SI.

Conclusions
The results we report show equivalent metabolic variabil-
ity between survivors and non-survivors and that non-
survivors had higher SI. These results are based on a
numerical, objective, model-based SI metric which takes
into consideration both nutrition-insulin inputs and meta-
bolic outcomes. The underlying data cohort is derived
from a mixed medical ICU, and as previous work has
shown consistency in variability across different cohorts,
countries and centres, it is likely that the results of this
study are not specific to the original data set. Overall,
these results suggest that glycaemic outcomes and
differences between survivors and non-survivors are thus
more a function of the control provided rather than the
underlying metabolic condition.
This outcome has implications for future study and

protocol design in this area. Future work is required to
confirm these results and explore the relationship be-
tween outcomes and GC.

Additional files

Additional file 1: Metabolic system model and insulin sensitivity. This
file presents additional details on the physiological model and methods
used to calculate a patient’s time-varying insulin sensitivity used in this
study. (DOCX 375 kb)

Additional file 2: Clinical significance calculations. This file presents the
underlying calculations used to define the clinical ‘equivalence range’ used
in this study. (DOCX 68 kb)
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