POCT Applications

 Two examples – areas of growth and interest
 Coagulation
 Tight glycemic control (TGC)

POCT Coagulation

Increasingly used in the hospital and outpatient settings.

- Primary uses:
 - Anticoagulation monitoring during cardiopulmonary bypass (CPB) surgery
 - Cardiac catheterization
 - Anticoagulation monitoring in the outpatient setting

POCT Coagulation

Primary uses (continued):

- Guidance of transfusion therapy in surgery
- Monitoring/assessment of anti-platelet therapy
 D-dimer in the assessment of pulmonary emboli (PE)

POC Coagulation Tests

ACT
PT-INR
D-dimer
Platelet function
Thromboelastography (TEG)

ACT

Used to monitor heparin administration during CPB surgery, cardiac catheterization, hemodialysis, ECMO Two main assays: – Celite – Kaolin Heparin administration - Moderate (1-2 units/mL)-cath lab, hemodialysis, **ECMO** Low dose (<1 unit/mL)-DVT, post-cardiac cath

POCT - ACT

Problems with ACT:

- Variability in dose-response among patients
- Inter-instrument differences
- Reagent differences (kaolin, celite, mixtures)
- Hematocrit and temperature effects
- Aprotinin effect
- No "equivalent" laboratory test

POCT - PT INR

Increasingly used in outpatient setting - Anticoagulation clinics for adjusting warfarin therapy while patient waits Other sites: - Primary care clinics - Physician office Skilled nursing facility (Nursing Homes)

POC INR Monitors

Varying thromboplastins and endpoint detection methods Designed to use capillary whole blood Designed primarily for patient use Data management capabilities to enhance professional use just starting to be available

POC INR Monitors

Make	Model	Prof. use	Pt. use	Low ISI	Int. QC
Roche	CoaguChek Classic (no longer made)	Y	Y	Y	N
	CoaguChek S	Y	N	Y	N
	CoaguChek XS	Y	Y	Y	Y?
	CoaguChek XS Plus	Y	N	Y	Y?
ITC	ProTime	Y	Y	Y	Y
	Hemochron Jr. Signature	Y	N	Y	N
Hemosense	INRatio	Y	Y	Y	Y
Abbott	i-STAT	Y	N	Y	Y ?

Santrach P. Presentation Charleston SC 2007

Self-Monitoring of Oral Anticoagulation: a systematic review and meta-analysis

14 randomized trials with a total of 3049 participants comparing self-monitoring with routine anticoagulation

Primary care as control group: 8

Anticoagulation clinic as control group: 6

Henaghan C et al Lancet 367:404, 2006

Self-Monitoring of oral anticoagulation: a systematic review and meta-analysis

Self-monitoring associated with a higher rate of testing (weekly vs monthly) Not feasible for all individuals Physical limitations Training issues Attendance Failure - Device problems

Heneghan C, et al. Lancet 367:404, 2006

PE = Pulmonary Embolism

DVT = Deep Vein Thrombosis

POCT – D-dimer

Used to rule in/rule out PE and DVT

Mortality of PE as high as 30% without treatment; can drop to 2% if treated promptly

A thrombus is broken into fragments containing D-D bonds, D-D-E bonds, E-D-D-E bonds; may result in emboli in heart, lungs, carotid artery

Diagnostic procedures invasive (e.g. venography); expensive and carries risk

Increases in D-dimer

- Disseminated intravascular coagulation
 Trauma
 Post-surgery
 Hematoma
 Arterial thrombosis
 Venous thromboembolism
- Pregnancy

Cancer
Diabetes
Thrombolytic therapy
Older age
Generalized hospitalized patient

Types of D-dimer Assays

- ELISA (gold standard)
 Quantitative rapid ELISA
- Semi-quantitative rapid ELISA
- Qualitative rapid ELISA
- Quantitative latex agglutination assay
- Semi-quantitative latex agglutination assay
- Whole blood agglutination assay

D-dimer for Pulmonary Embolism

Test	Sensitivity	Specificity	Positive LR	Negative LR
ELISA	0.95*	0.44	1.68	0.13
Quant rapid ELISA	0.95*	0.39	1.56	0.13
Semi-quant Rapid ELISA	0.93*	0.36	1.45	0.20
Qual rapid ELISA	0.93	0.68	2.92	0.11
Quant latex	0.89	0.45	1.62	0.24
Semi-quant Latex	0.92	0.45	1.68	0.17
Whole blood	0.78	0.74	2.93	0.31

Ann Intern Med 140:589-602, 2004

D-dimer for Pulmonary Embolism

Positive Likelihood Ratio

- Large & often conclusive change from pre- to posttest probability if >10
- Not helpful if 1-2
- Negative Likelihood Ratio
 - Large & often conclusive change from pre- to posttest probability if <0.1
 - Not helpful if 0.5 1.0
 - ELISA assays comparable to NLR for a normal to near normal lung scan (0.10)

Ann Intern Med 140:589-602, 2004