

Glucose monitoring and control in hospitalized patients: How we got here and where we might be going

Roger L. Bertholf, Ph.D. Professor of Pathology Director of Clinical Chemistry, Toxicology, and Point of Care Testing University of Florida Health Science Center/Jacksonville

In The Beginning . . . (*circa* 1963)

E

13

21	Im	tor	Anton Hu Elkhart, I	bert Clemens nd.		3,039,353
1] 2] 5] 3]	App File Pate Assi	l. No. 1 nted gnee	723,102 Apr. 22, 1 Sept. 14, Miles Lab Elkhart, 1	1968 1971 Ioratories, Inc. nd.		3,147,680 3,340,764 3,445,170 3,215,843
						755,725
41	REFLECTANCE METER 4 Claims, 4 Drawing Figs.					Primary Exa Assistant Ex
21	U.S.	Ci	250	/210, 356/195, 356	356/191, 5/212, 356/226	Louis E. C
1	inc.	- Jan		G01j 3/4	6, G01n 21/48	ABSTRACT
01	Field	l of Sea	rch 212, 226,	177, 176, 179, 186		reflectance reflectance
61		U	Refer	ences Cited ATES PATENTS		reflectance color values
739 774	,246 ,276	3/19 12/19	56 Hunto 56 Glass	er er et al	356/212 356/176	light output power and a

(inserve	77093		001,010
3,039,353	6/1962	Coates et al.	356/51 X
3,062,092	11/1962	Schmidt	356/226 UX
3,147,680	9/1964	Stimson.	356/226 X
3,340,764	9/1967	Bergson	356/177
3,445,170	5/1969	Dictrich et al.	356/226
3,215,843	11/1965	Neil	250/205
	F	OREIGN PATENTS	
755,725	8/1956	Great Britain	356/212
Primary Ex Assistant E Attorneys	aminer—R taminer— Joseph C.	tonald L. Wibert Warren A. Sklar Schwalbach, Michael A. K	ondzella and

George Orr

VP, Prof Prod Grp

ABSTART I: A small, portante priordericerte cell-type effectance meter is described for use in measuring coller reflectance values of analytical test devices. Since these analytical test devices have predetermined ranges of coller reflectance values, the reflectance meter is preset to read color values within these ranges. The meter thas a constant light output circuit, a regulated power supply based on battery power and a battery power check circuit. Walter Ames Compton, MD CEO, Miles Laboratories

glucose + $O_2 \xrightarrow{GO}$ gluconic acid + H_2O_2

 H_2O_2 + o-tolidine \rightarrow oxidized o-tolidine + H_2O_2

U.S. Patent #3,092,465 (June 4, 1963)

(Ernie Adams)

UNIVERSITY of

Health Science Center

UF

Self-Monitoring of Blood Glucose (1978)

Danowski TS and Sunder JH. Jet injections of insulin during selfmonitoring of blood glucose. Diabetes Care **1978**;1:27-33.

UF

Health Science Center

DCCT (1993)

Cumulative Incidence of the First of Any of the Predefined Cardiovascular Disease Outcomes

Goals of intensive therapy:

Preprandial BG 70-120 mg/dL Postprandial BG <180 mg/dL Monthly HbA1c <6.05%

alth Science Center

1,441 patients with Type 2 diabetes randomized to either:

Intensive therapy: insulin (pump or injection) 3-4 times per day based on BG 4 times daily

Conventional therapy: insulin twice daily with urine or BG daily.

Regulation of Cellular Uptake of Glucose

There are four glucose transport proteins: **GLUT1-GLUT4**

Only **GLUT4** is insulin-responsive

GLUT1-3 proteins facilitate noninsulin dependent glucose transport

GLUT1: Fetal tissue; RBCs; endothelium (BBB)

GLUT2: Renal tubules

UF

Health Science Center

GLUT3: Neurons, placenta

GLUT4: Adipose tissue and striated muscle

Stress and Hyperglycemia

- Increased glucose uptake
- Increased gluconeogenesis
- Lower glycogenesis
- Glucose intolerance
- Insulin resistance
- Up-regulation of glycolysis
- Are these changes beneficial?

Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 1995;98:75-84.

Intensive Insulin Therapy (2001)

Maintained of BG between 80-110 mg/dL.

Controls treated with insulin only when BG exceeded 215 mg/dL.

Mortality with IIT = 4.6%, vs. 8.0% in controls

(BG measurements by ABL700 analyzer on arterial blood collected from central line)

The First Sign of Trouble (2001)

The Portland Protocol (2003)

Observed mortality with continuous insulin infusion was 2.5%, vs. 5.3% with subcutaneous insulin.

 $CII \Rightarrow$ better glucose control \Rightarrow lower mortality

The DIGAMI 2 Trial (2008)

*Number of patients using drug/number of patients not using drug at discharge.

**Number of endpoints for patients using drug/number of endpoints for patients not using drug.

Mellbin L G et al. Eur Heart J 2008;29:166-176

Health Science Center

What The . . . ?!?!

th Science Center

		Outcome, No./Total No. of Patients (%)				
Subgroup	No. of Studies	Tight Control	Usual Care	Relative Risk (95% Confidence Interval)	Favors Tight Control	Favors Usual Care
Very tight control Moderately tight control	14 13	702/3031 (23.2)	781/3099 (25.2) 196/1089 (18.0)	0.90 (0.77-1.04)	-	-
Overall	27	892/4127 (21.6)	977/4188 (23.3)	0.93 (0.85-1.03)	•	
Septicemia ^b						
Very tight control Moderately tight control	4 5	186/1654 (11.2) 26/295 (8.8)	221/1672 (13.2) 43/295 (14.6)	0.80 (0.57-1.11) 0.64 (0.41-1.00)		-
Overall	9	212/1949 (10.9)	264/1967 (13.4)	0.76 (0.59-0.97)	-	
New need for dialysis ^o						
Very tight control Moderately tight control	5 4	172/1424 (12.1) 28/366 (7.7)	193/1475 (13.1) 29/364 (8.0)	0.95 (0.70-1.29) 0.98 (0.59-1.61)		-
Overall	9	200/1790 (11.2)	222/1839 (12.1)	0.96 (0.76-1.20)		•
Hypoglycemia (glucose ≤40 r	ng/dL) ^d					
Very tight control Moderately tight control	11 4	409/2895 (14.1) 41/380 (10.8)	75/2952 (2.5) 9/386 (2.3)	5.23 (4.12-6.64) 4.37 (2.19-8.72)		
Overall	15	450/3275 (13.7)	84/3338 (2.5)	5.13 (4.09-6.43)		+

0.1

1.0

Relative Risk (95% Confidence Interval)

Wiener, R. S. et al. JAMA 2008;300:933-944.

"In critically ill adult patients, tight glucose control is not associated with significantly reduced hospital mortality, but is associated with an increased risk of hypoglycemia."

NICE-SUGAR* (2009)

6,104 patients randomized to:

Intensive control: 81-108 mg/dL

Conventional control: ≤180 mg/dL

"Severe hypoglycemia (blood glucose \leq 40 mg/dL) was reported in 206 of 3016 patients (6.8%) in the intensivecontrol group and 15 of 3014 (0.5%) in the conventional-control group (P<0.001)."

*Normoglycemia in Intensive Care Evaluation—Survival Using Glucose Algorithm Regulation

OMG, What Are We Going To Do?

The FDA Steps In

\pm 15 mg/dL at < 75 mg/dL

± 20% at ≥ 75 mg/dL

(accuracy, not precision)

Public Hearing, March 16-17, 2010

Jeffrey E. Shuren, MD, JD, Director, Center for Devices and Radiological Health, FDA:

"[The] FDA receives approximately 12,000 adverse event reports associated with blood glucose meters each year."

"Despite the fact that these devices have not been approved for this use, glucose meters are increasingly being used to achieve tight glycemic control."

Patricia Bernhardt, MT(ASCP), Scientific Reviewer, FDA:

"... currently there is no distinction between the performance requirements for over-the-counter and professional use glucose meters. So when a glucose meter is cleared for over-the-counter use, it can also be used in professional settings."

Table 4 — Example of presentation of system accuracy results for glucose concentration < 4,2 mmol/L (75 mg/dL)

Within ± 0,28 mmol/L	Within ± 0,56 mmol/L	Within ±0,83 mmol/L	
(Within ± 5 mg/dL)	(Within ± 10 mg/dL)	(Within ±15 mg/dL)	
18/40 (45 %)	28/40 (70 %)	38/40 (95 %)	

Table 5 — Example of presentation of system accuracy results for glucose concentration $\ge 4,2 \text{ mmol/L} (75 \text{ mg/dL})$

Within ± 5 %	Within ± 10 %	Within ± 15 %	Within ±20 %	
36/160 (22 %)	78/160 (49 %)	136/160 (85 %)	156/160 (97 %)	

A recent evaluation of glucose meters cleared in last 2 years showed that approximately 72% would meet $\pm 10 \text{ mg/dL}$ at <75 mg/dL and approximately 50% would meet $\pm 15\%$ at $\geq 75 \text{ mg/dL}$.

Why are glucose meters so imprecise?

- Operator variability
- Hospitalized patients
 - > Hypotension; decreased capillary blood flow
 - > High or low pO_2
 - > Anemia; hematocrit
 - > DKA
 - Renal failure; uremia
 - > Hepatic failure; azotemia
 - > Drugs
- The "Design Conundrum"

Optimizing analytical methods

Optimizing analytical methods

Clarke's error grid for glucose measurement

What about HbA_{1c}?

Distribution of estimated numbers of persons without a history of diabetes in the US 2000 Census population (age >=20 years) at different Hb A1C cutpoints

