Transcutaneous Bilirubin: How Does it Compare to the Lab?

SW Florida Point of Care Network
February 24, 2011

Brad S. Karon, MD PhD
Associate Professor of Laboratory Medicine and Pathology
Department of Laboratory Medicine and Pathology
Mayo Clinic, Rochester MN
Relevant Financial Relationship(s)
None

Off Label Usage
None
Outline

- **Bilirubin**
 - Production
 - Accumulation

- **Bilirubin measurement**
 - Reference method
 - Diazo methods
 - Peroxidase (unbound bilirubin)
 - Whole blood methods
 - Bu and Bc

- **Intra and Inter-lab method comparability**

- **Relationship between TcB and lab bilirubin**
Bilirubin

- Principle breakdown product of heme
- Produced primarily in liver, spleen, bone marrow
- Highly insoluble
Bilirubin

• Accumulation

 Adults: conjugated bilirubin >> unconjugated

 Infants: Unconjugated bilirubin peaks between 3-6 days of life

 RBC fragility
 Immaturity of glucuronosyl transferase enzymes
 Other factors

• High unbound bilirubin levels toxic

 Kernicterus—frequency unknown, 100% preventable
Current guidelines

• AAP 2004: Assess every newborn for the risk of HB before D/C
 2 options:
 - Pre-discharge TSB or TcB - plot on age-based nomogram
 - Assess clinical risk factors

• US Preventive Services Task Force 2009
 No evidence screening reduces Kernicterus
 Possible harm thru overtreatment, increase cost
Bilirubin measurement

• Chromatographic separation identified 4 fractions:

 Unconjugated bilirubin

 Bilirubin monoglucuronide (singly conjugated)

 Bilirubin diglucuronide (doubly conjugated)

 Delta bilirubin (covalently bound to albumin)
Bilirubin measurement

- **Reference method**

 Doumas bilirubin method based on Jendrassik-Grof reaction

 Reaction of bilirubin with diazotized sulfanilic acid (diazo reagent) to form azobilirubin dye

 Accelerated by caffeine and sodium benzoate

 USA reference lab Medical College Wisconsin

 Reaction produces consistent results between labs
 Inter-lab CV ≤ 2% for values over 2 mg/dL
 Lo et al., Clin Biochem 2009
Bilirubin measurement

• Diazo methods

Most common method used in labs

Without accelerant mainly conjugated and delta bilirubin react with diazo reagent—direct bilirubin

With accelerant all bilirubin reacts with diazo reagent—total bilirubin

Total minus direct = indirect bilirubin
Approximates unconjugated bilirubin
Bilirubin measurement

• Peroxidase (unbound bilirubin) methods

 Horseradish peroxidase catalyzes oxidation of unconjugated bilirubin

 Protein-bound bilirubin is protected

 Used as measure of unbound (free) bilirubin

 Hemolysis, conjugated bilirubin, photoisomers, sample dilution, peroxidase concentration may all interfere/impact performance of assays
Bilirubin measurement

- **Whole blood methods—photometric**
 - Bilirubin max absorbance ~ 450 nm

 Neonatal blood devoid of other substances that absorb near 450 nm

 Makes direct measurement easier in neonates

 Hemoglobin abs. similar at 450 and 540 nm

 Abs. 450 minus abs. 540 = bilirubin

 Both two-point (requires centrifugation) and multi-point wavelength analyzers exist

 Multi-point whole blood bilirubin measurement on many blood gas/cooximetry analyzers
Bilirubin measurement

- Bu/Bc measurement (neonatal bilirubin)
 Vitros dry slide technology

 Mordant separates absorbance spectra of conjugated and unconjugated bilirubin

 Upper layers of slide filter out hemoglobin, protein (delta bilirubin), other interferences

 Conjugated and unconjugated bilirubin measured separately

 Total neonatal bilirubin = conj + unconj
Bilirubin measurement

• Bu/Bc measurement

Direct photometric measurement of both unconjugated and total (minus delta) bilirubin

Less sensitive to effects of hemolysis
 Newer diazo methods also less sensitive
 Direct bili by diazo still problematic

Small sample volume
Intra-lab comparability of methods

- Comparison of 9 methods within one academic medical center

3 central lab methods
- Hitachi 912, Dimension RxL, Vitros 250

3 whole blood methods
- Twin Beam, OMNI S, ABL 735

3 transcutaneous methods
- JM-102, JM-103, BiliCheck
Intra-lab comparability of methods

- Comparison of 9 methods within one academic medical center

 124 samples from 122 near-term/term infants

 Plasma bilirubin conc. 0.5-22.7 mg/dL
 9 infants (7%) above 15 mg/dL

 3 lab methods correlated strongly
 Slopes 0.94-1.05 between all lab methods
 Intercepts < 0.2 mg/dL between all methods
Intra-lab comparability of methods

• Comparison of 9 methods within one academic medical center

Compared to mean of 3 lab methods:

3 transcutaneous devices correlated well
 Slopes 0.95-1.04
 Intercepts -0.4 – 0.9 mg/dL
 Correlation coefficients 0.961 to 0.966

3 whole blood devices correlated well
 Slopes 0.97-1.03
 Intercepts -1.0 to 0.1 mg/dL
 Correlation coefficients 0.980 to 0.994
Intra-lab comparability of methods

• Comparison of 9 methods within one academic medical center

General conclusions (comparability)

Laboratory, whole blood and transcutaneous bilirubin methods agree well up to \(\sim 12-15 \) mg/dL.

Can screen with either transcutaneous or whole blood bilirubin.
Confirm in lab above 12 (TcB) or 15 (whole blood) mg/dL.

For lower values doesn’t matter which method used.
Inter-lab comparability of methods

• Lo et al., Arch Pathol Lab Med 2008;132:1781-5

Reported distribution of values from ~ 5000 labs participating in bilirubin Proficiency Testing

10 lab methods including diazo, oxidase, photometric

One sample/survey prepared by adding NIST SRM 916 to pooled human sera

Reference Doumas method used to grade all other methods
Inter-lab comparability of methods

• Lo et al.

Between 2003-2006 PT surveys contained one sample with reference value 19-22 mg/dL

In 2003 mean all method bias ~ 0.5 mg/dL

Mean bias (all methods) 1.5-2.0 mg/dL between 2003-2005, ~ 1.0 mg/dL in 2006

In 2006 most major methods overestimated total bilirubin by ~ 1.0 mg/dL

A few instruments differed widely from all others
Inter-lab comparability of methods

• Lo et al.

• Instrument and method-dependent differences in calibrators responsible for positive bias
 Assigned calibrator values too high

• Proposed goal of 10% total error for bilirubin values > 10 mg/dL

• To reach goal quality of calibrators will need to be improved
Transcutaneous bilirubin

• Can TcB be used to screen for or assess risk of severe hyperbilirubinemia?
• What is relationship between TcB and lab bilirubin?
• Which lab bilirubin, does it matter?
At your institution who has oversight of TcB testing?

1. TcB testing not done
2. Nursing/pediatric service
3. Lab
4. POCT program
5. Don’t know
TcB

- 4 studies BiliChek TcB underestimates serum bilirubin by 0.06-0.96 mg/dL

- 1 study BiliChek TcB overestimates serum bilirubin by ~1 mg/dL across a wide range of serum bilirubin values

- 2 studies BiliChek TcB overestimates serum bilirubin at low concentrations, underestimates serum bilirubin at higher (> 12 mg/dL) levels

- No consistent association between method (photometric, diazo, BuBc) and mean bias
TcB

• Questions about TcB

What is sensitivity and specificity of high risk TcB for predicting high risk TsB?

If TcB is low risk, can we avoid blood draw (high sensitivity)?
TcB

• Mayo study

200 infants with clinical suspicion of hyperbilirubinemia, serum bilirubin ordered by physician in nursery

Measure BiliChek TcB within 30 minutes of serum bilirubin drawn

Measure serum bilirubin diazo method and direct photometric measurement of unconjugated bilirubin (BuBc)
TcB

Results: TcB vs. diazo TsB

Median bias (TcB minus TsB) = 2.0 mg/dL
Bias relatively constant over range studied
Results: TcB vs. BuBc TsB

Median bias (TcB minus TsB) = 1.3 mg/dL
Bias relatively constant over range studied
What is the clinical impact of systematic overestimation of transcutaneous bilirubin?

Can TcB still be used to predict risk of hyperbilirubinemia?
TcB

- Each TcB and TsB value, combined with postnatal age in hours, used to determine risk zone (low, low-intermediate, high-intermediate, high risk) according to Bhutani

- Sensitivity and specificity of high risk TcB for predicting high risk TsB was calculated
<table>
<thead>
<tr>
<th>Serum bilirubin (diazo)</th>
<th>Low or low-intermediate risk</th>
<th>High-intermediate or high risk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low or low-intermediate risk</td>
<td>48</td>
<td>77</td>
<td>125</td>
</tr>
<tr>
<td>High-intermediate or high risk</td>
<td>1</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>128</td>
<td>177</td>
</tr>
</tbody>
</table>

51/52 (98%) sensitivity for predicting high risk diazo TsB
48/125 (38%) specificity for predicting low risk diazo TsB
Transcutaneous bilirubin

<table>
<thead>
<tr>
<th>Serum bilirubin (Vitros)</th>
<th>Low or low-intermediate risk</th>
<th>High-intermediate or high risk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low or low-intermediate risk</td>
<td>35</td>
<td>29</td>
<td>64</td>
</tr>
<tr>
<td>High-intermediate or high risk</td>
<td>4</td>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>92</td>
<td>131</td>
</tr>
</tbody>
</table>

63/67 (94%) sensitivity for predicting high risk

BuBc TsB

35/64 (55%) specificity for predicting low risk

BuBc TsB
TcB

• Compared 2 TcB methods to BuBc on Vitros
• Both TcB devices underestimated lab bilirubin
• Risk assessment effective only after adjustment for negative bias of TcB
• At Mayo BiliChek overestimated BuBc
• General consensus that TcB screening protocols need to be established institutionally
 Due to variability in lab bilirubin?
Which TcB meter does your facility use?

1. Respironics BiliChek
2. Drager (Minolta) JM 103
3. TcB not performed
4. Don’t know
TcB

- **Unknown variables**

 Variability of TcB compared to lab bilirubin
 - Mayo data: TcB SD at 13 mg/dL ~ 1 mg/dL
 - Compares to lab method SD of ~ 0.2 mg/dL at 20 mg/dL

 Inter-institution variability of TcB?
 - No reference standard for TcB
 - Can only compare to same lab method
 - Use reference method or multiple methods tightly correlated to reference?

Does universal TcB screening increase treatment intensity?
TcB and reference bilirubin

• What is relationship between TcB and reference method for TSB?

 Roche total bilirubin method recalibrated to better match reference method

 Compare TcB to TSB before and after Roche recalibration

 Compare Roche total serum bilirubin to reference method before and after recalibration using four samples with values assigned by reference method
<table>
<thead>
<tr>
<th>CoBas Unit 1</th>
<th>CoBas Unit 2</th>
<th>Reference method performed by Childrens Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Bili</td>
<td>Dir Bili</td>
<td>T. Bili</td>
</tr>
<tr>
<td>Tube #1</td>
<td>10.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Tube #2</td>
<td>13.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Tube #3</td>
<td>18.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Tube #4</td>
<td>21.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Tube</td>
<td>Cobas Unit 1</td>
<td>Cobas Unit 2</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>T. Bili</td>
<td>Dir Bili</td>
</tr>
<tr>
<td>#1</td>
<td>9.8</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>9.9</td>
<td>0.2</td>
</tr>
<tr>
<td>#2</td>
<td>12.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>12.8</td>
<td>0.3</td>
</tr>
<tr>
<td>#3</td>
<td>16.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>16.9</td>
<td>0.3</td>
</tr>
<tr>
<td>#4</td>
<td>19.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>19.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Mean (± SD) bias between TcB and TSB for 95 paired TcB/TSB samples before recalibration was 2.5 ± 1.3 mg/dL.

Mean (± SD) bias between TcB and TSB for 118 paired TcB/TSB samples performed after recalibration was 2.9 ± 1.4 mg/dL.

BiliChek TcB overestimatesDoumas reference bilirubin by 2.9 mg/dL.
TcB and reference bilirubin

• Future plans:

 Study relationship between TcB and Roche TSB in multiple facilities, traceability to reference method in all sites

 Determine whether universal TcB screening increases utilization of lab resources (TSB draws) or phototherapy
Conclusions

• Lab bilirubin measurement will vary by method and instrument

• Many lab methods overestimate bilirubin as measured by reference method

• Primary problem is calibration scheme used by vendors
Conclusions

• Relationship between TcB and lab bilirubin primarily function of lab variables

• BiliChek TcB appears to overestimate reference TSB
 will vary by instrument/institution

• Lack of standardization of lab methods makes inter-lab evaluation of TcB methods difficult

• Each institution must evaluate the effectiveness of TcB screening
Acknowledgements

• Walter J. Cook, MD
• Andrea C. Wickremasinghe, MD
• Amy K. Saenger, PhD
• Amy Wockenfus