What is ECMO?

Chris Beaty, BSN, RN, CCRN
ECLS Coordinator, Nemours/AI duPont
Director of Perinatal Program
No disclosures

- Although, I am accepting offers………
So What is ECMO?

- ECMO, ECLS, ECCS, MCS
 - All terms used interchangeably
- ECMO (ExtraCorporeal Membrane Oxygenator)
 - Outside the body oxygenation
- ECLS (ExtraCorporeal Life Support)
 - Outside the body life support
 - ECMO
 - VADs
ECMO
ECMO

- A modified heart-lung bypass technique used to treat *reversible cardiopulmonary failure* that is no longer responsive to maximal conventional therapy.

- More than 50,000 infants, children and adults treated to date.
ECMO vs. Cardio Pulmonary Bypass (CPB)

- **CPB**
 - hypothermia
 - full heart-lung bypass
 - open circuit
 - complete anticoagulation

- **ECMO**
 - normothermia
 - partial, full or no heart-lung bypass
 - closed circuit
 - partial anticoagulation
Cardiopulmonary Bypass

- Cross-Circulation
Dr. John Gibbon
Early Bypass Machines and Lungs

Sheet Oxygenator

Bubble Oxygenator
Bypass Today
History

- **Heart-Lung bypass**
 - 1930s-1950s
- **Adult ECMO**
 - 1970s
- **Neonatal ECMO**
 - Late 1970s-early 1980s
ECMO History

- Adult ECMO came first
- First patient 1971
- NIH trial in late 1970s (HUP was a study center)
 - Trial stopped due to poor survival
- Interest in adult ECMO declined until late 1980s
 - Technology & knowledge improved
Neonatal ECMO

- Dr. Robert Bartlett at U.C. Irvine
- Late 1970s through mid-1980s
- High survival rate (80%) in term babies
- High IVH rate in preterm babies
Neonatal ECMO #1
Esperanza
Criteria for ECMO

- Reversible Disease.
- Failure to respond to maximal conventional therapy
 - HFOV, 100% Oxygen, iNO, Inotropes
- Failure to improve on maximal therapy
- Acute deterioration
Criteria for ECMO

- Oxygenation index > 40
 \[OI = \frac{MAP \times FiO2 \times 100}{PaO2} \]

- A(Alveolar)-a(arterial) gradient > 600 > 6 hours

 - A-a gradient = \[\left(760 - \text{partial pressure of water vapor} \right) \times FiO2 - (1.25 \times PaCO2) - (\text{Post-ductal PaO2}) \]

 - Simplified: 713 - (1.25xPaCO2) - PaO2 assuming at sea level, normothermic and on 100% FiO2.
Contraindications

- Severe intracranial hemorrhage
- Non-reversible coagulopathy
- Prematurity (< 34 weeks)?
- Multi-organ system failure
- More than 5-7 days “hard” ventilation (?)
TIME and Reversibility

![Plot of selected ages](image)

- Survival probability
- Days of mechanical ventilation pre-ECMO
- ELSO Registry
- N=1,243
Trends

Neonatal ECMO

Pediatric ECMO

ELSO Registry, 2010.
Adults

International Summary - January, 2014

Adult Respiratory (18 years and over)

Annual Respiratory Adult Runs

<table>
<thead>
<tr>
<th>Year</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>1</td>
</tr>
<tr>
<td>1987</td>
<td>1</td>
</tr>
<tr>
<td>1988</td>
<td>5</td>
</tr>
<tr>
<td>1989</td>
<td>2</td>
</tr>
<tr>
<td>1990</td>
<td>20</td>
</tr>
<tr>
<td>1991</td>
<td>15</td>
</tr>
<tr>
<td>1992</td>
<td>35</td>
</tr>
<tr>
<td>1993</td>
<td>72</td>
</tr>
<tr>
<td>1994</td>
<td>70</td>
</tr>
<tr>
<td>1995</td>
<td>95</td>
</tr>
<tr>
<td>1996</td>
<td>32</td>
</tr>
<tr>
<td>1997</td>
<td>97</td>
</tr>
<tr>
<td>1998</td>
<td>82</td>
</tr>
<tr>
<td>1999</td>
<td>112</td>
</tr>
<tr>
<td>2000</td>
<td>92</td>
</tr>
<tr>
<td>2001</td>
<td>92</td>
</tr>
<tr>
<td>2002</td>
<td>117</td>
</tr>
<tr>
<td>2003</td>
<td>117</td>
</tr>
<tr>
<td>2004</td>
<td>148</td>
</tr>
<tr>
<td>2005</td>
<td>121</td>
</tr>
<tr>
<td>2006</td>
<td>153</td>
</tr>
<tr>
<td>2007</td>
<td>98</td>
</tr>
<tr>
<td>2008</td>
<td>480</td>
</tr>
<tr>
<td>2009</td>
<td>481</td>
</tr>
<tr>
<td>2010</td>
<td>614</td>
</tr>
<tr>
<td>2011</td>
<td>906</td>
</tr>
<tr>
<td>2012</td>
<td>1035</td>
</tr>
</tbody>
</table>

Nemours. Alfred I. duPont Hospital for Children
ECMO Equipment

Basic Components:
- Roller/Centrifugal Pump
- Oxygenator
- Blender/Gas Source
- Pressure Monitoring
- Servo Regulation
- Heater
The Original ECMO Lung
Today’s Oxygenators

- Quadrox D
- Quadrox iD Pediatric
ECMO Circuit

- Blood is drained from right atrium
- Passes through roller pump or centrifugal head
- Pumped through oxygenator
- Sweep gas flows countercurrent through oxygenator
- Oxygenated blood rewarmed
- Returned to patient via arterial cannula
INDICATIONS FOR TREATMENT
Pulmonary Support

- **Neonatal:**
 - CDH
 - MAS
 - Sepsis

- **Pediatric/Adults:**
 - Pneumonia
 - ARDS
 - Bridge to transplant

Pulmonary Hypertension
Pre-ECMO Pulmonary Management

- High-frequency ventilation/Jet Ventilation
 - Neonates/pediatrics
- Low volume ventilation
- Nitric oxide
- Surfactant replacement
- Permissive hypercapnia
- Prone position
Pulmonary ECMO Management

- **Time:** Lung rest
- **Treat underlying causes**
- **Facilitate recovery**
 - Bronchoscopy, Pulmonary Toilet
 - Surfactant, Nitric Oxide, Sildenafil, Flolan
 - Lung conditioning
 - Steroids
- **Wean from ECMO when patient can be supported on low-moderate vent settings**
Rehabilitation on ECMO – What?
Cardiac Support

- Failure to wean from CPB
- Acute deterioration (cardiac arrest)
- Low cardiac output syndrome
- Pre-op Stabilization
- Bridge to transplant or VAD
Failure to Wean From CPB

- Poor LV function
- Pulmonary
 - Pulmonary hypertension
- Factors
 - Preoperative condition
 - Duration of cardiopulmonary bypass
 - Hemorrhage
Low Output Syndrome

- Predicable fall in cardiac output
- Most cases present 6-12 hours post-operatively
- Causes include:
 - underlying CHD
 - ischemia-reperfusion injury
 - inflammatory mediator release
 - changes in LV loading conditions
Post-op Low Output Syndrome

Wernovsky et al, Circulation 1995
Cardiac Arrest

- Arrhythmia
- Tamponade / mass effect
- Loss of pulmonary blood flow
- Poor coronary artery perfusion
Type of Support

- **Veno-Arterial:**
 - cardiac and pulmonary support
 - cannulation of venous and arterial system

- **Veno-Venous:**
 - No cardiac support
 - Venous cannulation only
 - Improves oxygenation of pulmonary vascular bed (pphn)
VA ECMO Neck Cannulation

- **Arterial cannula**
- **Venous cannula**

© 1991, University of Michigan
VA ECMO Chest Cannulation
VA ECMO Femoral Cannulation
VVDL Avalon Catheter
VV ECMO
Multiple Cannulation Sites
Patient Management

- Multidisciplinary Team Approach
 - Surgeons
 - Physicians
 - Nurses
 - Respiratory Therapists
 - Perfusionists
 - ECMO Specialists
 - Ancillary Staff
 - Therapeutic Services
 - Social Work
Communication

- Communication is key
 - Ultimately, what we do individually or as a team has a direct impact on patient outcomes.
 - Multidisciplinary
 - ECMO Rounds
 - Establish parameters
 - Develop short/long term plans
Care Models

- **Single Caregiver Model**
 - 1 Nurse assuming both roles
 - “Set it and forget it” mentality
 - In-house perfusionist to manage troubleshooting
 - Often times used with centrifugal technology

- **2:1 (ELSO recommendation & Nemours model)**
 - 1 Nurse & 1 ECMO Specialist : patient
 - ECMO Specialist will manage troubleshooting of pump
 - Nurse will assume direct patient care
 - Back-up perfusionist/coordinator available for emergency management.
Anticoagulation

- Heparin bolus administered during cannulation
- Heparin infusion while on ECMO
- Anti Xa, ATIII, PTT and ACT utilized to manage heparin dose
- Activated Clotting time (ACT) monitored hourly initially and then q 2 to 4 hours once Anti Xa stable
- Must always look at full coagulation panel including Platelets, PT, INR, Fibrinogen, Calcium and TEG’s.
Respiratory Assessment

- Auscultation: “I don’t hear a thing?”
- Assessment of secretions
- Daily chest x-ray
- Arterial blood gases q2-6 hours
- Continuous mixed venous, arterial saturation monitoring
Fluid Management

- “Capillary leak syndrome” common in first 48-72 hours
- Massive third spacing necessitates aggressive fluid replacement
- Self limiting process
- Delays pulmonary recovery
- Appears fluid overloaded but intravascularly dry
Serial X-rays during run

Pre-ECMO

Post-cannulation

16 hours into run
Neurologic Assessment

- **Neonates:**
 - Daily head ultrasound, fontanel, pupils
 - EEG if needed
 - CT if needed

- **Pediatric/Adults:**
 - LOC, pupils, GCS
 - EEG, CT if complications suspected
Cardiac Support

- Inotropes weaned once stable
- May be required throughout ECMO course
- Monitor electrolytes and rhythm
- Assess pulse pressure
- Echocardiography on low flow
Medical Complications

- Hemorrhage/Bleeding
 - Surgical site

- Fluid Overload
 - Hemofiltration required

- CNS
 - Seizures, Hemorrhage, infarcts

- Renal Failure
 - Non-pulsatile flow

- Sepsis
Mechanical Complications

- Oxygenator failure
- Tubing rupture
- Air in circuit
- Pump malfunction
Future Applications

- Smaller circuits
- Heparin-bonded circuits/Coated Circuits – reduced need for anticoagulation
- Increased use in resuscitation (ECPR)
- Inter-hospital transport on ECMO
- EXIT to ECMO
Hanuola ECMO Transport Sled
ECLS Transport
Ex Utero Intrapartum Therapy (EXIT)
Thank You!

ECMO Sucks.
(On the venous side)