

Molecular Diagnostics & Point of Care Testing

Ellis Jacobs, Ph.D., DABCC, FACB Director, Scientific Affairs, Abbott Rapid Diagnostics Adjunct Associate Professor of Pathology, Mount Sinai School of Medicine

Meeting Name Location day | month | year

Disclaimers

- I am a salaried employee of Abbott Rapid Diagnostics
- ARDx produces molecular testing devices for use at the POC
- All data in this presentation can be found in product labeling or peer reviewed literature
- This will be a balanced presentation describing the characteristics of various molecular POCT systems

Advantages of Rapid Testing for Infectious Diseases

What are the issues of respiratory disease?

The symptoms of respiratory diseases are vague

- Pneumonia symptoms
 - Cough
 - Fever
 - Chills
 - Difficulty breathing

Influenza

- Cough
- Fever
- Chills
- Malaise

Treatment is different

- Bacteria
 - Broad spectrum antibiotic
- Narrow spectrum antibiotic
- Influenza
- Antiviral
- Treat symptoms only

Complications of mistreatment

- Mistreatment of bacterial etiology
 - May increase morbidity/ mortality
 - May have longer hospital stay
 - May get C. difficile
- Mistreatment of influenza
- May have increased resistance and *C. difficile*

Results – Flu Negative

■ MD unaware, n =92 ■ MD aware, n=97

Results – Flu Positive

■ MD unaware, n =106 ■ MD aware, n=96

Data sourced from Bonner, et al, Pediatrics (2003) 112:363-367

Key Operational Metrics

Data sourced from Bonner, *et al*, Pediatrics (2003) 112:363-367 FOR EXTERNAL USE, PRINT/DISTRIBUTION PERMITTED

Treating Respiratory Diseases in the Emergency Department

Misuse of Antibiotics Can Lead to Other Medical Issues

Issues with Clinical Samples

Viral titer is highest in first 48 hours

Proper sample collection is necessary

Dilution in transport media

Rapid Tests

Pro

- Tests take minimal time
- Some tests are so simple that they are CLIA-waived
- Can be used to triage patients
- Positive results can be used to rule out other issues like pneumonia so don't give unnecessary chest x-ray, antibiotics, etc.

Con

- Performance is not as good as culture, PCR, or DFA
- Often used as a screening test, usually with negatives requiring additional confirmation.

Molecular Tests

Pro

- For respiratory specimens, high performance
- Same day results

Con

- Turn around time from lab may be extensive, especially if batching specimens
- Expensive
- May require experienced technicians, labs, dedicated equipment, etc.

Pros and Cons of Molecular Testing

Pros

Cons

Good for pathogens that you only have when you are sick

• Influenza

Good for living things which would have RNA/DNA

May only be a screen for bacteria/viruses that people may normally carry

• Clostridium difficile

Bad for non living things

• Protein, DOA

Good to see if active infection & can test where the infection is

• Not things like sepsis

Bad for past infection

• Want test that detects antibody

Molecular Tests on the Market

PCR – Polymerase Chain Reaction

- Rely on the ability to amplify due to temperature cycling
- Many traditional molecular companies, e.g,
 - Alere $\mathbf{M} \mathbf{q}$ Competitive Reporter Amplification
 - Cepheid GeneXpert®
 - BD Affirm[™] VPIII direct probe
 - Biocartis Idylla[™] qPC
 - Enigma[®] MiniLabTM qPCR Flu A/B, RSV
 - Roche cobas[®] Liat Lab in a tube
 - Spartan RX (PGx) PCR

Isothermal

- Rely on the ability to do the reaction at a single temperature
- Meridian *illumi*gene[®] LAMP (loop mediated isothermal amplification)
- Quidel Solana[®] HDA (Helicase dependent amplification)
- Alere[™] i NEAR (Nicking enzyme amplification reaction)

Introducing the Players in PCR

Patient sample containing DNA (or RNA)

• May or may not have target gene

Primers

• short bits of manufactured DNA that recognize the target gene

Nucleotides

• building blocks of DNA

Taq Polymerase

• Enzyme that replicates DNA in a PCR reaction

Fluorescent dye for reporting results

• realtime PCR

Taq Polymerase Binds at Primer Sites

PCR Amplification

Roche cobas[®] Liat - Lab In a Tube

Data sourced from Roche Product Labeling Permission granted by Roche Diagnostics 20 minutes to results Flu

15 minutes to results Strep A

Footprint 4.5 x 9.5 x 7.5

Weight 8.3 lbs

Flu A/B

- Sensitivity 100%/100%
- Specificity 96.8%/ 94.1%
- LOD $10^{-2} 10^{-1} / 10^{-3} 10^{-1} \text{TCID}_{50} / \text{mL}$

Strep A

- Sensitivity 98.3%
- Specificity 94.2%
- LOD 5-20 CFU/mL

RSV

- Sensitivity 97.0%
- Specificity 98.7%
- LOD 4 CFU/mL

Sample processing in the Liat Tube

Tanriverdi, Chen, Chen. A rapid and automated sample to result HIV load test for near patient application. J Infect Dis. 2010;201:S52-S58 by permission of Oxford University Press

Liat HIV Quant Assay amplification plot

Tanriverdi, Chen, Chen. A rapid and automated sample to result HIV load test for near patient application. J Infect Dis. 2010;201:S52-S58 by permission of Oxford University Press

Linearity of the Liat HIV Quant Assay

Tanriverdi, Chen, Chen. A rapid and automated sample to result HIV load test for near patient application. J Infect Dis. 2010;201:S52-S58 by permission of Oxford University Press

Portable bench-top real time (rt) Reverse Transcriptase (RT) PCR system for processing and analysis of Alere q HIV-1/2 test cartridges

50 minutes to results

7.8 kg (3.5 lbs)

In-built battery to seamlessly bridge power outages

Not Available in US

The Alere™ q HIV-1/2 Detect Cartridge

Qualitative measurements of HIV-1 (subtypes M/N and O) and HIV-2

Low sample volume - only 25 μl of capillary/EDTA venous whole blood or plasma

All reagents and controls enclosed in the test cartridge

No manual sample processing

Fully automated capture and enrichment of the specific RNA target, reverse transcription and real time PCR

High speed target amplification and real time multiplex detection based on CMA (Competitive reporter Monitored Amplification) assay format

Competitive Reporter Monitored Amplification

Permission granted from: Ullrich T et al (2012) Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization. PLoS ONE 7(4): e35438. doi:10.1371/journal.pone.0035438

AlereTM q HIV 1/2 Detect – Performing a Test

Test Results:

For HIV-1 (subtypes M/N and O) and HIV-2 a **qualitative** (detected/undetected) result is given.

QC Parameters:

Sample Detection: control for sufficient sample volume Device: multiple QC parameters for the functionality of Alere[™] **q** HIV-1 Positive Control: internal amplification control for HIV-1 HIV-2 Positive Control: internal amplification control for HIV-2 Negative Control: control for non-specific hybridization Analysis: multiple QC parameters for the Analysis process, incl. positive hybridization control

Failing of at least one of these controls renders the test invalid.

Alere[™] q HIV 1/2: Mozambique EID Study

- Blinded cross-sectional study of 827 HIV-exposed infants (1-18 months)
- Alere[™] q HIV 1/2 performed by nurses at POC in 4 primary health care centres and 1 hospital ward
- Reference Method: Roche Diagnostics PCR at the reference laboratory

AGE	Overall	HIV-pos*	%-pos
1-2m	500	19	3.8%
2-3m	124	6	4.8%
3-6m	111	12	10.8%
6-9m	58	14	24.1%
>9m	34	14	41.1%
TOTAL	827	65	7.9%

* HIV-positivity defined by the Roche technology

Overall agreement	95% C.I.	Positive percent agreement	95% C.I.	Negative percent agreement	95% C.I.	
99.8%	99.1 - 100%	98.5%	95.5 - 100%	99.9%	99.3 - 100%	
Cohen's Kappa	95% C.I.	McNemar's Test	p-value	Data sourced from Jani et al. ,J Acquir Immune		
0.981	0.960 - 1.000	0.500	0.480	Defic Syndr Volume 67, 1, 2014	Number 1, September	
FOR EXTERNAL USE, PRINT/DISTRIBUTION PERMITTED				Molecular Diagnostics & POCT	October 12, 2018 26	

GeneXpert[®] - Cepheid

Data sourced from Cepheid Product Labeling Permission granted by Cepheid

FOR EXTERNAL USE, PRINT/DISTRIBUTION PERMITTED

75 minutes to results

• 2 min hands on time

Broad molecular menu

• 11 FDA approved assays*

Footprint 3 x 4.2 x 9.1"

2.2 lbs

Battery powered

Isothermal Molecular Technologies

cHDA : Circular Helicase-dependent amplification **HDA** : Helicase-dependent amplification **IMDA** : Isothermal multiple displacement amplification **LAMP** : Loop-mediated isothermal amplification **MPRCA** : Multiply-primed rolling circle amplification **NASBA** : Nucleic acid sequence based amplification **NEAR**: Nicking enzyme amplification reaction **RAM** : Ramification amplification method **RCA** : Rolling circle amplification **RPA** : Recombinase polymerase amplification **SDA** : Strand displacement amplification **SMART** : Signal mediated amplification of RNA technology **SPIA** : Single primer isothermal amplification **TMA** : Transcription mediated amplification

Isothermal Molecular Technologies

cHDA : Circular Helicase-dependent amplification HDA: Helicase-dependent amplification **IMDA** : Isothermal multiple displacement amplification **LAMP** : Loop-mediated isothermal amplification **MPRCA** : Multiply-primed rolling circle amplification **NASBA** : Nucleic acid sequence based amplification **NEAR**: Nicking enzyme amplification reaction **RAM** : Ramification amplification method **RCA** : Rolling circle amplification **RPA** : Recombinase polymerase amplification **SDA** : Strand displacement amplification **SMART** : Signal mediated amplification of RNA technology **SPIA** : Single primer isothermal amplification **TMA** : Transcription mediated amplification

Helicase Dependent Amplification Assays

Solana[®] - Quidel

35 minutes to results

• Including heat pretreatment step

Small footprint (9.4" x 9.4" x 5.9")

8.8 lbs

Battery pack available

GAS only FDA approved test

- Sensitivity 98.2%
- Specificity 97.2%
- $LOD 6.81 \times 10^4 \text{ CFU/mL}$

Data sourced from Quidel Product Labeling

Solana[®] - Quidel

Step 1 Specific primers bind to target sequences that have been separated by the helicase.

Step 2 Specific DNA probes labeled with a quencher on one end and a fluorophore on the other end bind to the single-stranded biotinylated amplicons.

Step 3

Upon annealing to the amplicons, the fluorescence probes are cleaved and the fluorescence signal increases due to physical separation of fluorophore from quencher.

Data sourced from Quidel Product Labeling

Loop Mediated Amplification

Use of 4–6 different primers to recognize 6-8 distinct regions

Outer primers are known as F3 and B3

Inner primers are forward inner primer (FIB) and backward inner primer (BIP)

Reprinted from Trends in Parasitology, 31/8, Alhassan, Li, Poole, Carlow, Expanding the MDx toolbox for filarial diagnosis and surveillance, 391-400, (2015), with permission from Elsevier

FOR EXTERNAL USE, PRINT/DISTRIBUTION PERMITTED

Devices, Biosensors 2013, 3, 18-43; doi:10.3390/bios3010018 Molecular Diagnostics & POCT October 12, 2018 34

LAMP final products are stem loop DNAs

The final products are stem loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops due to hybridization between alternately inverted repeats in the same strand

Positive LAMP reactions can be visualized with the naked eye

*illumi*gene[®] – Meridian Bioscience

- Including heat pretreatment step
- < 2 minutes hands on time

Small footprint (8.3" x 11.5" x 3.7")

6.5 lbs

Room temp storage

6 FDA approved tests – C. difficile, GAS, GBS, HSV 1&2, Mycoplasma, Pertusis

- GAS Sensitivity 98.0%
- GAS Specificity 97.7%
- GAS LOD 400-430 CFU/mL

Data sourced from Meridian Bioscience Product Labeling FOR EXTERNAL USE, PRINT/DISTRIBUTION PERMITTED

NEAR Mechanism – Amplification from RNA

- NEAR amplifies target sequence directly from single stranded RNA
 - No heat denaturation required
 - Reverse transcriptase, DNA polymerase & Nicking endonuclease
 - Converts single stranded RNA to single stranded DNA

NEAR Mechanism – Amplification from dsDNA

- Assay amplifies target sequence directly from double-stranded genomic DNA
 - No heat denaturation required
 - Nicking Enzyme, DNA Polymerase
 - Creates single-strand copy of genome

NEAR Amplification Duplex – Bidirectional Amplification

Alere[™] i System

< 15 minutes to results < 2 minutes hands on time Small footprint (8.15" W x 5.71" H x 7.64" D) 1.4 lbs / 3 kg 3 approved tests – Flu A/B, GAS, RSV

Alere[™] i System

Flu Clinical Trial Results

Alere[™] i Influenza A & B Performance vs. Culture

Alere™ i Influenza A & B Performance vs. RT-PCR

Positive Percent Agreement = 94.8% (90.1-97.4) Negative Percent Agreement = 97.7% (95.9-98.7)

 Flu B

 RT-PCR +
 RT-PCR

 Alere™ i +
 123
 7

 Alere™ i 2
 500

Positive Percent Agreement = 98.4% (94.4-99.6) Negative Percent Agreement = 99.4% (98.3-99.8)

Summary of POCT nucleic acid amplification methods

	cobas ® Liat	Alere™ q	GeneXpert ®	Solana®	illumigene ®	Alere™ i
Technology	PCR	PCR	PCR	HDA	LAMP	NEAR
DNA Amplification	Y	Y	Y	Y	Y	Y
RNA amplification	Y	Y	Y	Y	Y	Y
"Denaturing" agent	Heat	Heat	Heat	Helicase	Betaine	Restriction enzymes
Pretreatment Required	Ν	Ν	Y/N	Y	Y	Ν
# of enzymes	1	1	1	2	1	2
Temp (°C)	95/72/ 57	95/72/57	95/72/57	64	60-65	52
Time to Result (min)	<20	55	75	35	<60	<15
Multiple Amplifications	Y	Y	Y	Y	Ν	Ν

Questions?

ellis.jacobs@alere.com

 \odot 2018 Abbott. All rights reserved. All trademarks referenced are trademarks of the Abbott group of companies. All other trademarks referenced are trademarks of their respective owners. SAHIGHR- 0072 vB 4/18

Abbott