The 123's of ACT

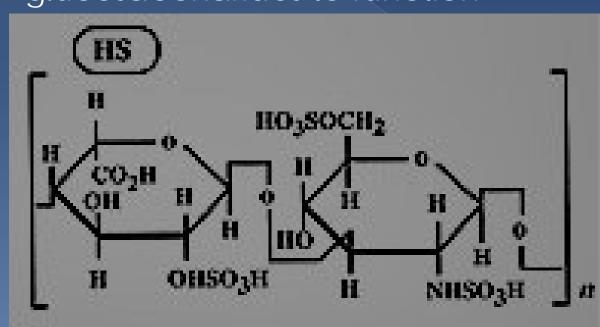
Marcia L. Zucker, Ph.D. ZIVD LLC

Objectives

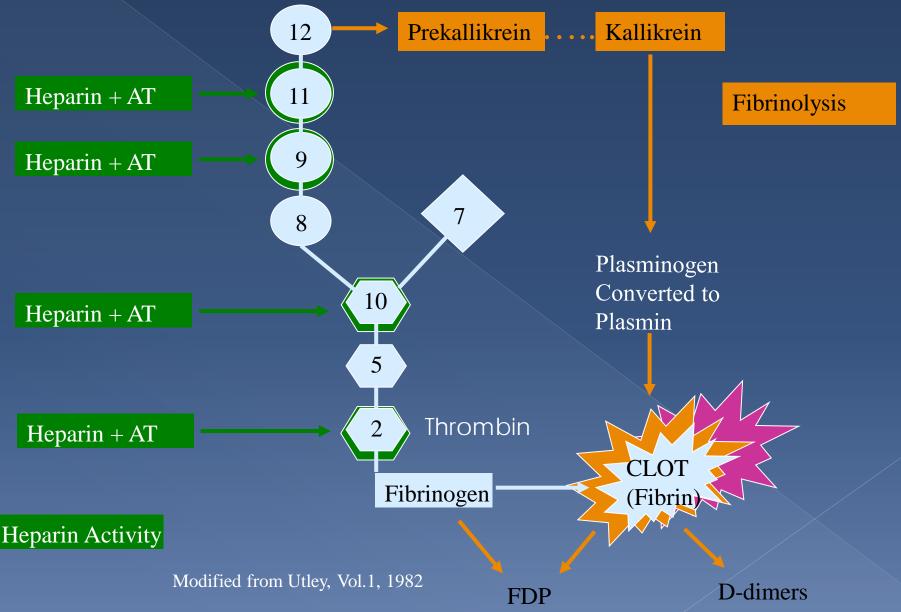
Explain why ACTs from different systems are not the same

 Develop a plan for switching from one ACT system to another

Describe why ACT and aPTT are not interchangeable


What is an ACT?

Modified Lee-White clotting time


- Add blood to glass tube, shake
 - Place in heat block
 - Visual clot detection
- First described in 1966 by Hattersley
 - > Activated Clotting Time
 - Add blood to glass tube with dirt, shake
 - Diatomaceous earth activator
 - Place in heat block
 - Visual clot detection
 - Proposed for both screening for coagulation defects and for heparin monitoring

What is Heparin?

Glucopolysaccharide
 MW range: 6,000 - 25,000 daltons
 Only ~1/3 molecules active
 Must contain specific sequence of glucosaccharides to function

Heparin Effects on Coagulation

Why Monitor Heparin?

- Potency varies by manufacturer
 Potency varies by lot
- Obse response varies by patient
 - > Half life ranges from 60 120 minutes
 - > Non-specific binding
- Functions by accelerating action of antithrombin
 - Antithrombin level critical for appropriate response

Why Use an ACT?

 Monitoring hemostasis for heparin anticoagulated patients

Why do we use an ACT?

Point of Care

- > Immediate turn around
- Rapidly adjust anticoagulant dosing as needed
 - Heparin half life varies by patient
 - Dose required varies by patient
 - Potency varies by lot
 - IV Direct thrombin inhibitors very short half life
 - Require immediate intervention
 - No antidote available

Where is an ACT Used?

- Cardiac surgery
- Percutaneous coronary intervention (PCI)
- Interventional cardiology
- ECMO
- Critical care
- Interventional radiology
- Electrophysiology
- Vascular surgery
- etc.

Cardiac Surgery

- Industry Standard Since 1970s
- Recommended as 1° method in AmSECT guidelines
- ACT improves outcome in CPB, PCI
 - > AACC NACB LMPG for POCT
 - Strongly recommend ACT monitoring of heparin anticoagulation and neutralization in cardiac surgery. (Class A, Level I)
 - Insufficient evidence to recommend specific target times for use during cardiovascular
 SUrgery. (Class I – conflicting evidence across clinical trials).
- Easy to run

Cardiac Surgery

Disadvantages

- > Each system yields different numbers
- Most sensitive to hypothermia and hemodilution
- Little or no correlation to heparin level
 - especially true for pediatric patients
- Standard ' target time = 480 seconds
 - > Developed with manual ACT
 - Suggested due to high variability

Catheterization Laboratory

• Diagnostic

- > Catheterization
 - locate and map vessel blockage(s)
 - determine need for interventional procedures
- > Electrophysiology

Interventional

- > Balloon angioplasty
- > Atherectomy (roto-rooter)
- Stent placement

Dosing & Target Times

- Angioplasty, Atherectomy, Stent placement
 - > 10,000 unit bolus dose or 2 2.5 mg/kg
 - > target ACT 300 350 seconds
 - Target time be reduced if ReoPro Used
 - ReoPro is one of 3 "GPIIb/IIIa" Inhibitors
- Output Catheterization and Electrophysiology
 - Same dosing and targets for vascular surgery
 - > 2500 5000 unit bolus dose
 - > frequently not monitored
 - if monitored Targets ~ 200 seconds OR twice baseline

ECMO

- ExtraCorporeal Membrane Oxygenation
 - > Very small window of safety
 - > NACB Guidelines:
 - Strongly recommend ACT monitoring to control heparin anticoagulation during ECMO. (Class A – Level III)
 - Target times for ECMO based on the ACT system. (Class B - Level III)
 - > Target often 180 200 seconds
 - Based on Hemochron P214/215 tubes

Critical Care

Oetermine when to pull the femoral sheath

- > Premature sheath pull can lead to bleeding.
- > Delayed removal can increase time in CCU.
- > Target set at each site.
 - ACT targets range from 150 220 seconds
 - aPTT targets range from 40 70 seconds
- Monitor heparin therapy
 - Target times determined by each facility
 - > ACT or aPTT

ACT versus aPTT

ACT

- Activated clotting time
- > POC Only
- Low, moderate or high dose heparin
 - System dependent

aPTT

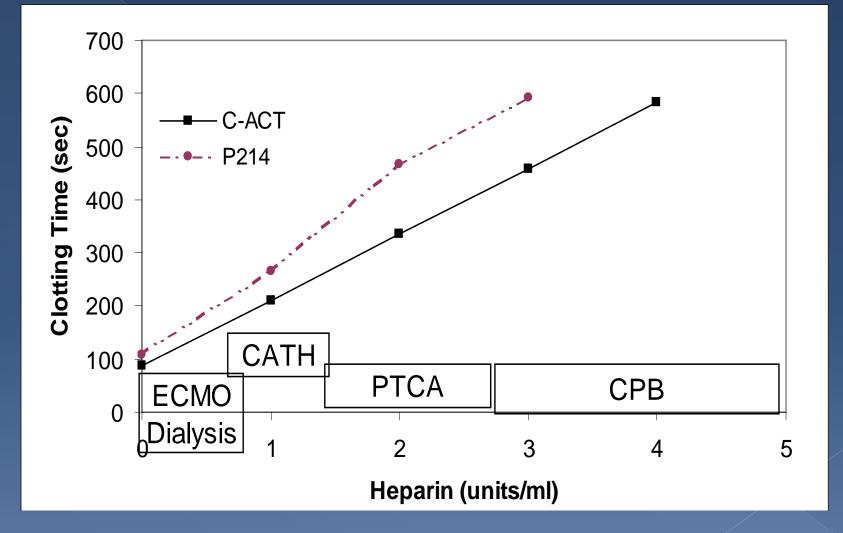
- Activated partial thromboplastin time
- > Laboratory or POC
- Low dose heparin only
 - System dependent upper limit

ACT and aPTT

Why are the results from different systems
 SO VERY different?
 Multiple activators

- > Multiple detection mechanisms
- > NO standardization

ACT Differences

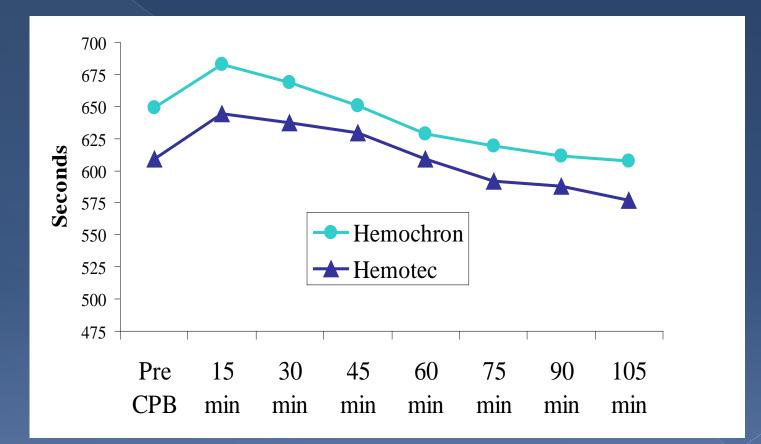

A Little History

1969 -HEMOCHRONOMETER

- > Hattersley ACT
 - Automated heating
 - Objective fibrin clot detection
- > two different activators
 - CA510 (later FTCA510)
 - diatomaceous earth
 - P214 glass bead

Two assays for separate uses

1980's

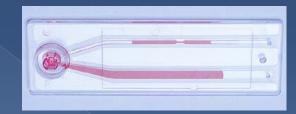

HemoTec ACT

(later Medtronics ACTPlus)

- > Add blood to dual cartridge
 - Liquid kaolin activator
 - Flag moves up and down
 - As fibrin forms, motion slows
 - Instrument displays clotting time

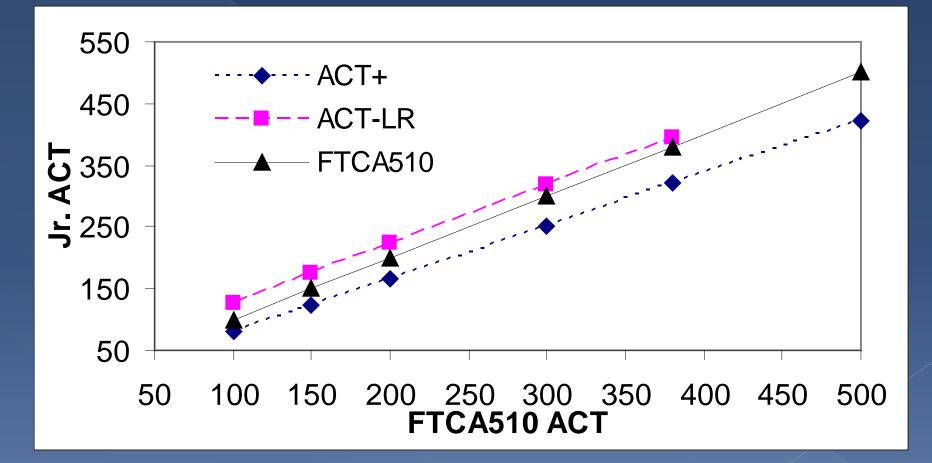
Lower values than CA510 -

differences ignored by clinicians


1980's - ACT Differences
 Reported in literature >20 years

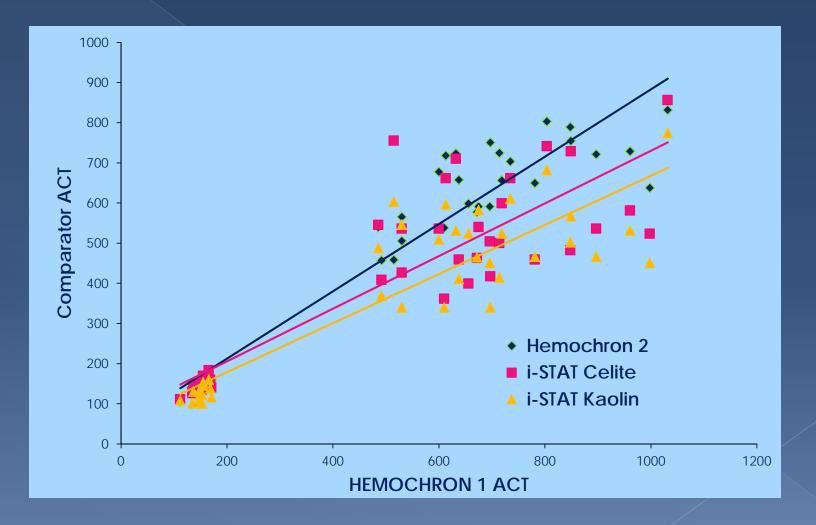
- > Clinical evaluations of Hemochron mid 1970's
- > By 1981
 - poor correlation between ACT and heparin level
- > By 1988
 - Hemochron and HemoTec clinically different
- Early '80's to Present
 - > Improved clinical outcome with ACT use
 - NACB Laboratory medicine practice guideline for point of care coagulation testing 2007
 - <u>http://www.aacc.org/SiteCollectionDocuments/NACB/LMP</u> <u>G/POCT/Chapter%204.pdf</u>

1990's


Microsample ACTs - Hemochron Jr

- > Add blood to sample well, press start
 - Silica, kaolin and phospholipid (ACT+)
 - Diatomaceous earth (ACT-LR)
 - Sample pumped across restriction
 - Flow slows with clot formation
 - Optics measure motion
 - Clotting time displayed

Clotting Times Different

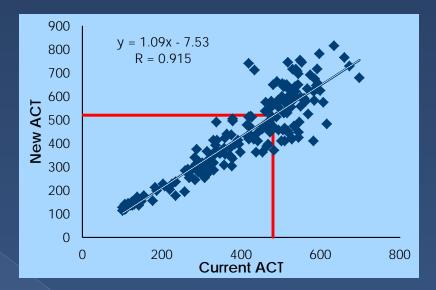

2000

Abbott - i-STAT

- Add blood to cartridge, press start
 - Diatomaceous earth or kaolin
- > Insert into instrument
- > No clot detection
 - Synthetic thrombin substrate
 - Electro-active compound formed and detected amperometrically
 - "Clotting time" reported

Number don't Match-Surprise!

How can a new ACT be used?


Evaluate by clinical agreement
 Standard split sample correlation
 Samples across entire range
 Correlation coefficient
 R ≥ 0.88
 Two by Two table of agreement

27

Clinical Correlation

• CVOR example

Current	New	Ν	%
<u>></u> 480	<u>></u> 520	72	34%
<u>></u> 480	< 520	19	9%
< 480	<u>></u> 520	7	3%
<480	<520	117	54%

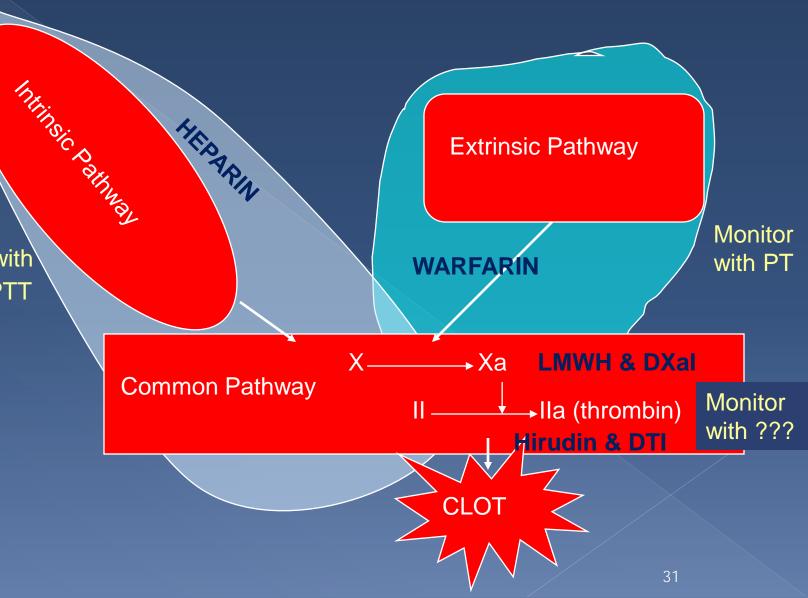
88% agreement

- 21 of 26 discrepancies
 - Current value within 10% of 480
- 5 of 26 discrepancies
 - New leads to additional heparin given

Clinical Comparison

• Data used to predict new target time

- Clinical agreement determined from predicted target time
- Only method of value in ECMO, sheath pull
 - Range of values too small for correlation analysis


Direct Thrombin Inhibitors

- Parenteral Direct thrombin inhibitors (DTIs)
 - > Used if patient at risk for HIT
 - Heparin induced thrombocytopenia
 - "Heparin allergy"
 - > Argatroban
 - > Angiomax

No ACT FDA cleared for monitoring DTIs

Coagulation Testing

Monitor with ACT / aPTT

ACT Monitoring - DTIs

Argatroban

- Synthetic analog of L-arginine
 - Reversible binding to thrombin
- > PCI monitoring: ACT 300 450
 - Papers state standard ACT targets for CPB

Angiomax

- > Synthetic analog hirudin (bivalirudin)
 - Reversible binding to thrombin
- Labeling requires ACT after initial bolus
 - Original studies with Hemochron ACT-LR
 - Any ACT >250 sec

Summary

ACTs are Global Assays

- > Used to monitor heparin
 - Heparin is non-homogenous
 - Difference by manufacturer & Lot
- ACTs differ:
 - > By manufacturer
 - > By activator
 - By detection mechanism

Must establish clinical equivalence

New target times that reflect clinical practice

QUESTIONS?

Marcia L. Zucker, Ph.D. ZIVD LLC Mlzucker.zivd@gmail.com