Selection & Implementation of a New POC Device

Marcia L. Zucker, Ph.D. ZIVD, LLC

Where we were....

- 1. Sales rep visits MD
- 2. MD decides to purchase
- 3. Implementation per MD orders
- 4. TJC / CAP / CMS / COLA inspection
 - > DEFICIENCIES CITED
- 5. POCC instructed to

FIX IT NOW!

Where we are.....

- 1. Sales rep visits MD
- 2. MD says "I want"
- 3. POCC spends weeks (if lucky) implementing system properly
- 4. MD uses for a month and decides test not useful
- 5. POCC blamed for unneeded costs

Where we should be....

- Sales rep visits MD
- 2. MD calls in POCC
- 3. Justification for new POCT developed
- 4. Multiple systems analyzed
- 5. Optimal system implemented
- 6. Benefits observed in clinical, operational, and / or financial outcomes

How we get there.....

- Develop a process for selection and implementation of POCT
 - CLSI POCT-09A can help
 - Selection Criteria for Point-of-Care Testing Devices
 - Include formal request policy
 - Not every test needs to be POC
 - Include formal justification
 - Improved outcomes?
 - Medical outcomes
 - Resource, Operational, and Financial Outcomes
 - Requires process change

Request for POCT

- What is requested?
 - New or replacement?
 - > If new:
 - Which analyte(s)?
 - For which patient population?
 - Why POC?
 - > Why?
 - Safety; Cost savings; Product innovation;
 User complaints; Standardization; Other
- Justification

Justification

- Let the Requester answer the questions:
 - Anticipated impact on cost of patient care
 - Anticipated impact on patient treatment
 - > Personnel expected to perform testing
 - > Procedures to be changed before implementation
 - Personnel to create new procedures
 - Personnel to participate in IQCP development
 - Personnel to be responsible for implementation and training

Assess Need for Novel POCT

Clinical:

- Why would POC be a benefit to current processes?
- Are accuracy and precision claims sufficient for targeted use?

Operational:

- Can current processes be changed to meet the clinical need
 - e.g., improve turnaround time?

Define New Test Environment

- Locations
 - > How many?
 - > Which personnel?
 - > How many devices per location?
- Is new connectivity required?
- Who will perform training?
- Who will perform the ongoing inventory management?

Define Required Features

- QC assessment
 - > Built-in; External; Lock-outs
- Operator control
 - Training; Competency; Lock-out
- Risk Assessment
 - > How will the system fit with IQCP requirements?
- Test Menu
 - Sufficient for current and potential future needs?
- Test Volume
 - How many tests will be run in a given timeframe?
 - How many instruments are required to handle the expected volume?

Personnel Requirements

- Operators
- Supervisors
- Compliance oversight (Lab?)
- Providers/ Clinicians
- Support Personnel
 - IT, purchasing, materials management, etc.

Identify Candidate Devices

- Resources
 - > Clinicians
 - > Other POCC
 - Laboratory periodicals and buyer's guides
 - Medical alert websites
 - > Vendor websites
 - Trade shows / Vendor fairs
 - Site visits to locations using the device

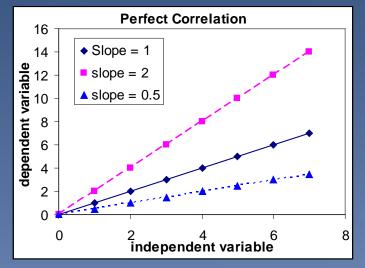
Evaluate Candidates

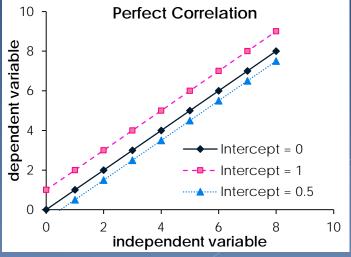
- Select 2 or 3 devices to compare
 - Optimally performed by expected operators
 - If performed by vendor reps, cannot be certain reflective of "true" performance
- Precision
 - Controls and / or patient samples
- Method comparisons
 - Optimally using patient samples
- Verification of reportable range
- Regulatory and accreditation requirements

Device Selection

- System performance
 - Data from preliminary evaluation
- Ease of Use
 - Subjective assessments from operators
- System Calibration and QC
- Software/ firmware features
 - Lock-outs, connectivity
- Reagents / consumables
 - Storage; shelf-life; preparation
- Vendor support
- Cost

Implementation


- Installation
- System Configuration
- Device calibration and QC
 - CMS Brochure # 3 Calibration and Calibration
 Verification
 - https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/6065bk.pdf
 - Implement / Validate IQCP
 - CMS Brochures 11-13
 - https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/CLIA_Brochures.html


Implementation continues....

- Validation studies
 - > CMS Brochure #2 Verification of Performance Specifications
 - http://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/6064bk.pdf
 - CLSI has guidelines for every step of system validation studies
 - Accuracy (quantitative and qualitative)
 - Precision
 - Reportable range
 - Reference interval verification
 - Method comparison studies

Validation - Accuracy

- Measure of how close a measurement is to the "true" result.
 - how often a measurement is close to the bulls-eye.
- Determined by correlation to local standard
 - correlate does not mean match

Accuracy - 2

Non-standardized Assay					
System	POC 1	POC 2			
Slope	0.456	0.718			
Intercept	0.011	-0.138			
R	0.988	0.974			

Reference	POC 1	POC 2	
0	0.01	-0.14	
0.2	0.10	0.01	
0.5	0.24	0.22	
1.0	0.47	0.58	
5.0	2.29	3.45	

Slope of POC 2 is closer to 1.0 ls it more accurate?

Two systems equivalent across critical range

Accuracy - Qualitative

		"true" Result		
		Positive	Negative	
Result being evaluated	Positive	True positive (TP)	False Positive (FP)	(PPV) - Positive Predictive Value
	Negative	False Negative (FN)	True Negative (TN)	(NPV) - Negative Predictive Value
		Sensitivity	Specificity	Concordance

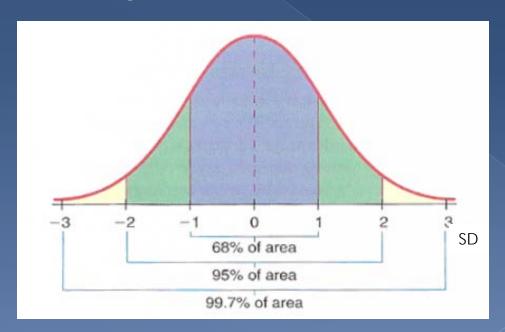
Sensitivity =
$$\frac{TP}{TP+FN}$$
 Specificity = $\frac{TN}{TN+FP}$
 $PPV = \frac{TP}{TP+FP}$ $NPV = \frac{TN}{TN+FN}$

$$Concordance = \frac{TP + TN}{Total\ Number\ Samples}$$

Validation - Precision

- Measured as CV (%) for replicate sample testing
 - Matrix effects differ for each reagent
- Minimum CV will be observed with fresh samples
 - Whole blood for most POCT
- Next lowest CV using manufacturer's recommended controls
 - Manufacturer ensures appropriate performance
- Worst CV may be seen with Proficiency Samples
 - Different effect on every assay

Validation - Reportable Range


- Use controls, calibrators, patient samples
 - Spiked samples can be used IF consistent with manufacturer's recommendations
 - > Patient samples optimal, where possible
- Only samples within the validated range should be used for patient assessment / treatment

Validation - Reference Interval

- Vary by analyte
- May vary by manufacturer
- Often different for POC versus laboratory
 - Different clinical decision points
- Labeling may indicate as LoQ or 99th percentile, etc.
 - > LoQ limit of quantitation
 - Concentration with specified CV (%)
 - Usually 10 or 20%

99th Percentile

- Determined from 100 patient reference group study
 - Values listed in increasing order, 99th value is 99th percentile
 - Approximated as the mean value of the normal reference group plus three standard deviations.

Validation - Method Comparison

- Often the same as Accuracy
- Optimally span the reportable range
- Special attention to clinical decision points
 - May require different decision points for POC and lab
 - Evaluate correlation across range
 - Set new decision points
 - Evaluate clinical agreement

Implementation

- Documentation
 - > IQCP
 - > Procedures
 - Step-by-step directions
 - Logs
 - Device troubleshooting references
 - Maintenance records
 - QC records
 - Method validation records
 - Training records
 - Results Reporting

Conclusion

- Spend the time up front
 - Don't implement a system that won't work
- Lean on your supplier
 - Set draft protocols, IQCP templates, etc.
 - Get free or reduced price supplies for evaluation and implementation
- Get buy in from everyone in house
 - Manage expectations!

QUESTIONS?

Marcia L. Zucker, Ph.D. ZIVD LLC Mlzucker.zivd@gmail.com